High-Dimensional Data Issues in Aging Research
衰老研究中的高维数据问题
基本信息
- 批准号:7862921
- 负责人:
- 金额:$ 28.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAge related macular degenerationAgingAlgorithmsAlzheimer&aposs DiseaseAmyloid depositionBiomedical ResearchBrainBrain imagingCollaborationsComputer softwareDNA MethylationDataData AnalysesDementiaDependenceDevelopmentDimensionsDiseaseEpigenetic ProcessGeneticGenomeGenomicsGoalsGroup StructureHealth SciencesImageImpaired cognitionIndividualInequalityLinear ModelsLinear RegressionsLiteratureMapsMeasuresMethodologyMethodsMichiganModelingMotorNerve DegenerationNeurodegenerative DisordersParkinson DiseasePatientsPerformancePittsburgh Compound-BPositronPositron-Emission TomographyPrincipal Component AnalysisProceduresPropertyPublic HealthRadioResearchResearch PersonnelSamplingSeveritiesSignal TransductionStagingStructureTestingTracerUniversitiesage relatedaging populationbasecase controlcognitive functioncohortcomputer programdisease diagnosisfollow-upgene discoverygenome wide association studyhealth science researchinterestmarkov modelnovelprogramspublic health relevanceresearch and developmentresponsesimulationstatistical centerstatisticstheoriestomographyuser-friendly
项目摘要
DESCRIPTION (provided by applicant): The broad objectives of this research are developments of regularization methods for high-dimensional data that arise commonly in biomedical studies, particularly studies in genomics, epigenetics, and brain imaging. The specific aims in this proposal are motivated by problems arising in studies of neurodegenerative disorders in an aging population including epigenetic and PiB PET studies for patients with Alzheimer's disease, PET studies of dementia in patients with Parkinson's disease, and the genome-wise association study for the age- related macular degeneration. They include: 1. Developing effective variable selection methods in high- dimensional regression models with grouped structures. We will consider the regularization with a novel convex penalty in multiple linear regression with high-dimensional grouped covariates, generalized linear models with high-dimensional grouped covariates, and multivariate linear regression with both high- dimensional grouped response variables and high-dimensional grouped covariates. Fast algorithms will be developed, theoretical properties such as oracle inequalities will be examined, and finite sample performance will be evaluated through extensive simulations. 2. Developing and evaluating regularization methods for disease diagnosis with functional data. We consider functional linear regression models and functional principal component analysis for imaging data to achieve sparse group effects. Both theoretical and numerical performance of the proposed methods will be examined. 3. Developing new multiple testing methodologies for dependent tests. We propose to use the hidden Markov models, either non-homogeneous or group homogeneous, to characterize the dependence structure among the multiple tests, and develop procedures with enhanced power and correctly controlled false discovery rate. We will examine the asymptotic optimality and numerical performance of the proposed methods. 4. Developing user-friendly computing programs systematically for the proposed statistical methodologies and disseminating them to health sciences researchers.
PUBLIC HEALTH RELEVANCE: The application is intended to solve emerging statistical issues in high-dimensional data analysis, which arise commonly in biomedical and public health studies. The proposed methods will be particularly useful in epigenetic, genomic, PET imaging studies on neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and age-related macular degeneration.
描述(由申请人提供):本研究的广泛目标是开发生物医学研究中常见的高维数据的正则化方法,特别是基因组学,表观遗传学和脑成像研究。本提案中的具体目标是由老龄化人群中神经退行性疾病研究中出现的问题激发的,包括阿尔茨海默病患者的表观遗传和PiB PET研究、帕金森病患者痴呆的PET研究以及年龄相关性黄斑变性的基因组关联研究。它们包括:1.在分组结构的高维回归模型中发展有效的变量选择方法.我们将考虑在高维分组协变量的多元线性回归、高维分组协变量的广义线性模型以及高维分组响应变量和高维分组协变量的多元线性回归中使用新型凸罚的正则化。快速算法将被开发,理论属性,如甲骨文不等式将被检查,有限样本的性能将通过广泛的模拟进行评估。2.用函数数据开发和评估疾病诊断的正则化方法。我们认为功能线性回归模型和功能主成分分析成像数据,以实现稀疏组的影响。所提出的方法的理论和数值性能进行检查。3.为相关测试开发新的多重测试方法。我们建议使用隐马尔可夫模型,无论是非齐次或组齐次,多个测试之间的依赖结构的特征,并开发程序,增强了电源和正确控制的错误发现率。我们将研究所提出的方法的渐近最优性和数值性能。4.为拟议的统计方法系统地开发用户友好的计算程序,并将其传播给健康科学研究人员。
公共卫生相关性:该应用程序旨在解决高维数据分析中出现的统计问题,这些问题通常出现在生物医学和公共卫生研究中。所提出的方法将是特别有用的表观遗传,基因组,PET成像研究神经退行性疾病,包括阿尔茨海默氏病,帕金森氏病,和年龄相关性黄斑变性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Nan其他文献
Bin Nan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Nan', 18)}}的其他基金
Cutting Edge Survival Methods for Epidemiological Data
流行病学数据的尖端生存方法
- 批准号:
10115561 - 财政年份:2018
- 资助金额:
$ 28.15万 - 项目类别:
Cutting Edge Survival Methods for Epidemiological Data
流行病学数据的尖端生存方法
- 批准号:
9896743 - 财政年份:2018
- 资助金额:
$ 28.15万 - 项目类别:
相似海外基金
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 28.15万 - 项目类别:
EU-Funded
Inhibiting Neovascularization and Subretinal Fibrosis in Neovascular Age-Related Macular Degeneration
抑制新生血管性年龄相关性黄斑变性的新生血管形成和视网膜下纤维化
- 批准号:
10639785 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Inhibition of melanogenesis in retinal pigment epithelium, a contributing factor in age-related macular degeneration
抑制视网膜色素上皮中的黑色素生成,这是年龄相关性黄斑变性的一个促成因素
- 批准号:
23K09052 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Evaluation of New Anti-inflammatory Treatments for Age-Related Macular Degeneration
年龄相关性黄斑变性的新型抗炎治疗方法的评价
- 批准号:
10642988 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Progression of Early Atrophic Lesions in Age-related Macular degeneration
年龄相关性黄斑变性早期萎缩性病变的进展
- 批准号:
10635325 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Cellular and molecular mechanisms of AIM2 and NLRP3 inflammasome activation in age-related macular degeneration
年龄相关性黄斑变性中 AIM2 和 NLRP3 炎症小体激活的细胞和分子机制
- 批准号:
10584110 - 财政年份:2023
- 资助金额:
$ 28.15万 - 项目类别:
Elucidation of roles of mast cells and macrophages in the pathogenesis of age-related macular degeneration
阐明肥大细胞和巨噬细胞在年龄相关性黄斑变性发病机制中的作用
- 批准号:
22H03243 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
AMD Mitochondria Modulate Expression of microRNA 135b-5p and 148a-3p in RPE Cybrids: Implications for Age-related Macular Degeneration
AMD 线粒体调节 RPE Cybrids 中 microRNA 135b-5p 和 148a-3p 的表达:对年龄相关性黄斑变性的影响
- 批准号:
10433610 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别:
Targeting the inflammatory response in age-related macular degeneration
针对年龄相关性黄斑变性的炎症反应
- 批准号:
10504138 - 财政年份:2022
- 资助金额:
$ 28.15万 - 项目类别: