Antibiotic Properties of Artificial Agonists for a Bacterial Riboswitch
细菌核糖开关人工激动剂的抗生素特性
基本信息
- 批准号:7980700
- 负责人:
- 金额:$ 43.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsActive SitesAffectAgonistAminesAmpicillinAntibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBindingBiological AssayCatalysisCatalytic RNACell WallChemicalsCleaved cellCollaborationsComplexDevelopmentElementsEquipment and supply inventoriesFeedbackFunctional RNAGene ExpressionGenesGeneticGoalsGram-Positive BacteriaGrantGrowthHumanHumulusIn VitroIonsIsotopesKineticsLaboratoriesLigandsMessenger RNAMetabolicMetabolic PathwayMetalsMethodsOrganic SynthesisPropertyProtonsRNAReactionRegulationReporter GenesResistanceSolventsStructureTestinganalogantimicrobial drugbasecombatdesignfightingglucosamine 6-phosphatein vivoinorganic phosphateinsightnovelnovel strategiespathogenpublic health relevanceresearch study
项目摘要
DESCRIPTION (provided by applicant): The emergence of antibiotic resistance has required that new approaches be applied in order to effectively fight a host of medically relevant bacterial infections. The currently used, imprecise antibiotics, need to be replaced with novel, rigorous, and safe treatments in order to combat the evolved bacterium of today. One way to destroy bacteria is to target their most essential, metabolic pathways. Riboswitches are RNA structural elements that bind cellular metabolites and control expression of essential metabolic genes providing a unique and distinct set of targets for development of artificial agonists to fight bacterial infections. Riboswitches are found in non-coding regions of mRNA molecules, and gene expression is modulated when metabolite binds directly to the RNA. Many riboswitches, once liganded, repress expression of associated or adjacent genes involved in the synthesis of the metabolite, providing an efficient feedback mechanism of genetic control. One particular riboswitch (the glmS riboswitch) binds to glucosamine-6-phosphate (GlcN6P), a building block of the cell wall in Gram-positive bacteria, and undergoes self-cleavage resulting in inactivation of the mRNA. We have shown that the ligand amine and phosphate functionalities are essential for binding of the metabolite to the riboswitch RNA and for catalysis by the catalytic RNA (ribozyme). These requirements for binding and catalysis of the GlcN6P-dependent riboswitch/ribozyme have been shared with our collaborator, Dr. David Berkowitz, to aid in design and organic syntheses of novel ligand analogs. We will test these analogs for their ability to induce glmS self-cleavage and inhibit bacterial growth. Already one ligand analog shows great promise in glmS self-cleavage assays. We also propose to continue our studies of the glmS self-cleavage reaction mechanism as further insight to acid-base catalysis may affect development of glmS ribozyme agonists that satisfy added chemical requirements for binding and activity. The aims of this renewal grant are focused on (1) ligand analog synthesis and characterization of glmS self-cleavage, (2) the structure, function and antibiotic properties of artificial agonists in regards to glmS riboswitch regulation of reporter gene expression and inhibition of bacterial growth, and (3) mechanistic studies of glmS-supported acid-base catalysis through coordinated proton transfer. Information gained from kinetic studies will further inform our continued design of ligand analogs that support glmS riboswitch/ribozyme catalysis and that act as novel antimicrobial agents against some of the hardest to treat human pathogens.
PUBLIC HEALTH RELEVANCE: The threat of bacterial infections due to lack of effective antibiotics has come to the forefront as these pathogens become resistant to almost every antibiotic available to the public. The need is great for new classes of anti-microbial agents that target different, but specific and essential, metabolic pathways, such as those which utilize riboswitches to control gene expression. Structure-function and mechanistic studies of riboswitches have enabled detailed analyses of ligand recognition by RNA as well as rational design of non-natural agonists that ultimately could function as antibiotics.
描述(由申请人提供):抗生素耐药性的出现要求采用新的方法,以便有效地对抗一系列医学上相关的细菌感染。目前使用的不精确的抗生素需要被新的、严格的和安全的治疗方法所取代,以对抗今天进化的细菌。消灭细菌的一种方法是瞄准它们最重要的代谢途径。核糖开关是结合细胞代谢物和控制必需代谢基因表达的RNA结构元件,为开发人工激动剂对抗细菌感染提供了一套独特的靶点。核糖开关存在于mRNA分子的非编码区,当代谢物直接与RNA结合时,基因表达被调节。许多核开关一旦配位,就会抑制参与代谢物合成的相关或邻近基因的表达,从而提供了一种有效的遗传控制反馈机制。一种特殊的核糖体开关(glmS核糖体开关)与革兰氏阳性细菌细胞壁的组成部分葡萄糖胺-6-磷酸(GlcN6P)结合,并经历自裂导致mRNA失活。我们已经证明,配体胺和磷酸盐的功能对于代谢产物与核糖体开关RNA的结合和催化RNA(核酶)的催化是必不可少的。这些结合和催化glcn6p依赖性核开关/核酶的要求已经与我们的合作者David Berkowitz博士分享,以帮助设计和有机合成新的配体类似物。我们将测试这些类似物诱导glmS自裂和抑制细菌生长的能力。已经有一种配体类似物在glmS自裂试验中显示出巨大的前景。我们还建议继续我们对glmS自裂反应机制的研究,因为对酸碱催化的进一步了解可能会影响glmS核酶激动剂的开发,从而满足结合和活性的附加化学要求。此次更新资助的目的集中在(1)glmS自裂配体模拟物的合成和表征;(2)glmS核开关调节报告基因表达和抑制细菌生长的人工激动剂的结构、功能和抗生素特性;(3)glmS支持的酸碱协同质子转移催化机制研究。从动力学研究中获得的信息将进一步为我们继续设计支持glmS核开关/核酶催化的配体类似物提供信息,并作为对抗一些最难治疗的人类病原体的新型抗菌药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JULIANE K STRAUSS-SOUKUP其他文献
JULIANE K STRAUSS-SOUKUP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JULIANE K STRAUSS-SOUKUP', 18)}}的其他基金
Examination of Ornithine Decarboxylase Antizyme RNA Structure and Function from Various Organisms for the Development of Antibiological Agents
检查不同生物体的鸟氨酸脱羧酶抗酶 RNA 结构和功能,用于开发抗生素
- 批准号:
10730595 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Development of Artificial Agonists for a Bacterial Riboswitch
细菌核糖开关人工激动剂的开发
- 批准号:
7810909 - 财政年份:2009
- 资助金额:
$ 43.58万 - 项目类别:
Development of Artificial Agonists for a Bacterial Riboswitch
细菌核糖开关人工激动剂的开发
- 批准号:
7247818 - 财政年份:2007
- 资助金额:
$ 43.58万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 43.58万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 43.58万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 43.58万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 43.58万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 43.58万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 43.58万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




