Regulation of structure and function of protein by glycosylation
通过糖基化调节蛋白质的结构和功能
基本信息
- 批准号:7924505
- 负责人:
- 金额:$ 26.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylglucosamineAffectAmino AcidsAmino Acyl-tRNA SynthetasesAntibodiesApoptosisAreaBiologicalBiological AssayBiomedical ResearchCell NucleusCell ProliferationCellsComplexCysteineDevelopmentEnvironmentEscherichia coliEthersEukaryotic CellEventGene TargetingGenetic CodeGenetic TranscriptionGlycobiologyGlycoproteinsGoalsIn VitroLeadLigaseLightLinkMYC geneMalignant NeoplasmsMammalian CellMetabolismMethodologyModificationMolecularMutateMutationOncogenesOrganismPaste substancePathway interactionsPhosphorylationPhosphorylation SitePositioning AttributePost-Translational Protein ProcessingProcessPropertyProtein GlycosylationProteinsProto-Oncogene Proteins c-mycRegulationResearchRoleSeriesSerineSignal TransductionSiteStructureSystemTechnologyTestingThreonineTransfer RNAUbiquitinUbiquitinationWorkc-myc Genescell growthchemical synthesisdirected evolutiongenetic selectionglycosylationin vivointerestmulticatalytic endopeptidase complexmutantnoveloverexpressionpreventprotein functionprotein structure functionprotein transportpublic health relevancesugartranscription factor
项目摘要
DESCRIPTION (provided by applicant): Our long-term goal is to understand the various regulatory roles of glycosylation. We are specifically interested in O-N-acetylglucosamine (O-GlcNAc) modification, where the GlcNAc moiety is attached by an ether linkage to a serine or threonine residue of a protein. This type of modification is ubiquitous in eukaryotic cells and may work in conjunction with phosphorylation to modulate the function of many proteins. However, the exact role of O-GlcNAcylation in the regulation of the structure and function of proteins had yet to be fully determined and exploited. One of the major bottlenecks for studying glycosylation is the inability to generate large amounts of homogenously glycosylated proteins. In this proposal, we would like to circumvent this problem by creating novel genetic codes and using them to `hijack' the translational machinery of the cell. Our system will be developed for mammalian cells, for this would allow the protein of interest to be produced in its native environment with necessary post-translational modifications, allowing for more natural folding, as well as the ability to perform functional assays in vivo. To generate novel genetic codes, we will evolve mutant tRNA-synthetase/suppressor-tRNA pairs that utilize glycosylated amino acids, and are orthogonal to mammalian cells, meaning they do not interact with any endogenous tRNAs or synthetases. We will evolve these pairs from existing tRNA-synthetase/suppressor-tRNA pairs using two approaches - "cut - paste" and "directed evolution". The newly generated mammalian cell can then synthesize large amounts of a homogeneous protein of interest containing an O-GlcNAc moiety at the desired sites. This unique and powerful technology can then be used to answer remaining questions about the mode of regulation of the many proteins that are known to undergo O-GlcNAcylation, such as the c-Myc protein. The c-Myc protein is an important oncogene that has been extensively studied. A complete understanding of its regulatory mechanism will be critical to the development of new therapies to treat or prevent cancer. It is known that c-Myc is modified with O-GlcNAc moiety only at one site (Thr-58). As a test of our system, we will investigate the effect of O-GlcNAcylation of Thr-58 of c-Myc on its protein stability, cellular localization and regulatory roles, especially the interplay between O-GlcNAcylation and phosphorylation at Thr-58. We will produce a series of homogeneous c-Myc proteins with different site-specific specific glycosylations and then performing various biological assays both in vivo and in vitro. These studies will shed light on the mechanism of regulation of proteins by glycosylation at a molecular level. PUBLIC HEALTH RELEVANCE: The long-term goal of this proposal is to study the regulatory role of O-N-acetylglucosamine (O-GlcNAc) modification in biological pathways. Comprehensive studies of the effects of O-GlcNAc as well as similar molecules on protein function have not been possible due to a number of technical obstacles. Yet, it is a highly significant area of research that is critical to our understanding of the functioning of living systems and biomedical research. As a starting point, I would like to probe the novel aspect of O-GlcNAc modification regulating oncogene c-Myc activities and elucidate its mechanism. One of the major bottlenecks for my project and related glycobiology is the inability to generate homogenous proteins bearing specific modifications in mammalian systems. I will circumvent these problems by hijacking the cell's translational machinery and generate new genetic codes or the non-natural glycosylated amino acids in mammalian cells. The newly developed mammalian cell will then synthesize a series of homogeneous glycosylated c-Myc proteins in vivo. This is a unique and powerful technology that can answer questions that could not be answered before such as nucleus relocation of c-Myc and interplay between phosphorylation and O-GlcNAcylation to regulate the ubiquitination and degradation of c-Myc.
描述(由申请人提供):我们的长期目标是了解糖基化的各种调节作用。我们对O-N-乙酰葡糖胺(O-GlcNAc)修饰特别感兴趣,其中GlcNAc部分通过醚键连接到蛋白质的丝氨酸或苏氨酸残基。这种类型的修饰在真核细胞中是普遍存在的,并且可以与磷酸化结合来调节许多蛋白质的功能。然而,O-GlcNAc化在调节蛋白质结构和功能中的确切作用尚未完全确定和开发。研究糖基化的主要瓶颈之一是无法产生大量的同质糖基化蛋白质。在这项提议中,我们希望通过创造新的遗传密码并使用它们来“劫持”细胞的翻译机制来规避这个问题。我们的系统将被开发用于哺乳动物细胞,因为这将允许感兴趣的蛋白质在其天然环境中产生,具有必要的翻译后修饰,允许更自然的折叠,以及在体内进行功能测定的能力。为了产生新的遗传密码,我们将进化出突变的tRNA合成酶/抑制剂tRNA对,它们利用糖基化氨基酸,并且与哺乳动物细胞正交,这意味着它们不与任何内源性tRNA或合成酶相互作用。我们将使用两种方法-“剪切-粘贴”和“定向进化”从现有的tRNA-合成酶/抑制剂-tRNA对进化这些对。然后,新产生的哺乳动物细胞可以合成大量在所需位点含有O-GlcNAc部分的同源目标蛋白质。这种独特而强大的技术可用于回答关于已知进行O-GlcNAc化的许多蛋白质(如c-Myc蛋白质)的调节模式的剩余问题。c-Myc蛋白是一种重要的癌基因,已被广泛研究。全面了解其调节机制对于开发治疗或预防癌症的新疗法至关重要。已知c-Myc仅在一个位点(Thr-58)被O-GlcNAc部分修饰。作为我们系统的一个测试,我们将研究O-GlcNAc化的Thr-58的蛋白质的稳定性,细胞定位和调节作用的影响,特别是O-GlcNAc化和Thr-58的磷酸化之间的相互作用。我们将生产一系列具有不同位点特异性糖基化的同质c-Myc蛋白,然后在体内和体外进行各种生物学测定。这些研究将在分子水平上阐明糖基化对蛋白质的调控机制。公共卫生相关性:本提案的长期目标是研究O-N-乙酰葡萄糖胺(O-GlcNAc)修饰在生物学途径中的调节作用。O-GlcNAc以及类似分子对蛋白质功能的影响的全面研究由于许多技术障碍而不可能。然而,这是一个非常重要的研究领域,对我们理解生命系统的功能和生物医学研究至关重要。作为一个出发点,我想探索新的方面O-GlcNAc修饰调节癌基因c-Myc的活动,并阐明其机制。我的项目和相关糖生物学的主要瓶颈之一是无法在哺乳动物系统中产生具有特定修饰的同质蛋白质。我将通过劫持细胞的翻译机器来规避这些问题,并在哺乳动物细胞中产生新的遗传密码或非天然的糖基化氨基酸。然后,新开发的哺乳动物细胞将在体内合成一系列同质糖基化的c-Myc蛋白。这是一种独特而强大的技术,可以回答以前无法回答的问题,例如c-Myc的核重定位以及磷酸化和O-GlcNAc化之间的相互作用,以调节c-Myc的泛素化和降解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZHIWEN Jonathan ZHANG其他文献
ZHIWEN Jonathan ZHANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZHIWEN Jonathan ZHANG', 18)}}的其他基金
Regulation of structure and function of protein by glycosylation
通过糖基化调节蛋白质的结构和功能
- 批准号:
7665358 - 财政年份:2008
- 资助金额:
$ 26.35万 - 项目类别:
Regulation of structure and function of protein by glycosylation
通过糖基化调节蛋白质的结构和功能
- 批准号:
8107662 - 财政年份:2008
- 资助金额:
$ 26.35万 - 项目类别:
Regulation of structure and function of protein by glycosylation
通过糖基化调节蛋白质的结构和功能
- 批准号:
7528158 - 财政年份:2008
- 资助金额:
$ 26.35万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 26.35万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 26.35万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 26.35万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 26.35万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 26.35万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 26.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 26.35万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 26.35万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 26.35万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 26.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists