Engineering Salmonella to be a targeted intratumoral anti-cancer therapeutic
将沙门氏菌改造为肿瘤内靶向抗癌治疗药物
基本信息
- 批准号:7745439
- 负责人:
- 金额:$ 28.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-14 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:Adjuvant ChemotherapyAffectApoptosisBacteriaCancer PatientCellsChemoreceptorsChemotaxisDiffusionDiseaseDistantDoctor of PhilosophyEngineeringFutureGenomeHumanKnock-outLife ExpectancyMassachusettsMeasuresMedical centerModalityModelingMolecular BiologyMusPaperPenetrationPharmaceutical PreparationsPlayPredispositionPublishingRadiationRecurrenceResearchResearch PersonnelResistanceRiboseRoleSalmonellaSalmonella typhimuriumStagingSurgical OncologistTestingTherapeuticToxic effectTumor BiologyTumor TissueUniversitiesanti-cancer therapeuticcancer cellcancer therapycell motilitychemotherapycytotoxiccytotoxicitydesigneffective therapyexperiencekillingsmalignant breast neoplasmmathematical modelmutantpolypeptidepreventprogramspromoterreceptorresearch studyresponsetumor
项目摘要
DESCRIPTION (provided by applicant): Engineering Salmonella typhimurium to be a targeted anti-cancer therapeutic Bacteria engineered to specifically target therapeutically resistant regions of tumors and controllably kill cancer cells will be able to overcome therapeutic resistance and increase the efficacy of cancer treatment. Therapeutic resistance is caused by limited drug penetration and poor cell susceptibility. Only motile bacteria, which can penetrate into tumor tissue and overcome diffusion limitations, are able to effectively kill therapeutically resistant cells distant from tumor vasculature. Controlling bacterial motility is therefore the key to developing effective therapies able to overcome therapeutic resistance. To date, the mechanisms of bacterial motility in tumors are poorly understood. Our approach will elucidate these mechanisms and will manipulate them to target tumor quiescence. The project is unique because it introduces the concept of intratumoral therapeutic delivery and the cylindroid tumor model, which was specifically designed to quantify bacterial chemotaxis in tumors. The proposed research program has three Specific Aims that combine expertise in tumor biology, molecular biology, and mathematical modeling. They are interrelated and will be performed concurrently: Aim 1 is to determine the mechanisms that control S. typhimurium accumulation in tumors; Aim 2 is to design S. typhimurium mutants with enhanced targeting; and Aim 3 is to create S. typhimurium mutants with increased tumor cytotoxicity. The three hypotheses of the research plan are: 1) S. typhimurium are attracted to and induce cellular apoptosis in tumors, 2) ribose-receptor-knockout S. typhimurium preferentially accumulate in quiescent regions of tumors, and 3) S. typhimurium expressing a radiation-inducible, cytotoxic polypeptide payload will more effectively reduce tumor mass. These hypotheses will be tested by measuring the localization of S. typhimurium in mouse tumors, deleting the ribose receptor from the S. typhimurium genome, and transforming S. typhimurium to express the mTRAIL polypeptide under control of the RecA promoter. The efficiency of the transformed bacteria to reduce tumor mass will be measured in culture and in mice. The experimental plan is part of a research program to develop a therapeutic strategy to overcome therapeutic resistance. Combined administration of tumor-quiescence-targeted S. typhimurium and adjuvant chemotherapy will increase therapeutic efficiency by more effectively killing cancer cells distant from tumor vasculature. Future human trials will investigate the ability of combined administration of bacteria and chemotherapy to reduce local recurrence and metastatic disease in stage-four breast cancer patients. Using bacteria to overcome therapeutic resistance and increase treatment efficiency will significantly reduce systemic toxicity, limit the deleterious effects of metastatic disease, and increase life expectancy. The experimental plan descries a therapeutic strategy to overcome therapeutic resistance using quiescence- targeted, controllably cytotoxic S. typhimurium. Combined administration of engineered bacteria and adjuvant chemotherapy will increase therapeutic efficiency by more effectively killing all cancer cells in tumors. This increased efficacy will reduce systemic toxicity, prevent local recurrence, limit the deleterious effects of metastatic disease, and increase life expectancy.
描述(由申请人提供):将鼠伤寒沙门氏菌工程化为靶向抗癌治疗剂被工程化为特异性靶向肿瘤的治疗抗性区域并可控地杀死癌细胞的细菌将能够克服治疗抗性并增加癌症治疗的功效。治疗抗性是由有限的药物渗透和差的细胞敏感性引起的。只有能够渗透到肿瘤组织中并克服扩散限制的能动细菌才能够有效地杀死远离肿瘤脉管系统的治疗抗性细胞。因此,控制细菌运动性是开发能够克服治疗抗性的有效疗法的关键。迄今为止,肿瘤中细菌运动的机制知之甚少。我们的方法将阐明这些机制,并将操纵它们以靶向肿瘤静止。该项目是独一无二的,因为它引入了肿瘤内治疗传递的概念和圆柱体肿瘤模型,该模型专门用于量化肿瘤中的细菌趋化性。拟议的研究计划有三个具体目标,结合联合收割机在肿瘤生物学,分子生物学和数学建模的专业知识。它们是相互关联的,将同时进行:目的1是确定控制S的机制。目的二是设计S.目的3是产生具有增强靶向性的鼠伤寒沙门氏菌突变体;具有增加的肿瘤细胞毒性的鼠伤寒沙门氏菌突变体。研究计划的三个假设是:1)S。2)核糖受体敲除S.鼠伤寒沙门氏菌优先在肿瘤静止区聚集;表达辐射诱导的细胞毒性多肽有效载荷的鼠伤寒沙门氏菌将更有效地减少肿瘤质量。这些假设将通过测量S的定位来检验。鼠伤寒沙门氏菌在小鼠肿瘤中,删除核糖受体从S。鼠伤寒沙门氏菌基因组,并转化S.在RecA启动子的控制下表达mTRAIL多肽。将在培养物和小鼠中测量转化细菌减少肿瘤质量的效率。该实验计划是一项研究计划的一部分,旨在开发一种治疗策略以克服治疗耐药性。肿瘤静止期靶向S.鼠伤寒沙门氏菌和辅助化疗将通过更有效地杀死远离肿瘤脉管系统的癌细胞来提高治疗效率。未来的人体试验将研究细菌和化疗联合给药减少四期乳腺癌患者局部复发和转移性疾病的能力。使用细菌来克服治疗耐药性和提高治疗效率将显著降低全身毒性,限制转移性疾病的有害影响,并增加预期寿命。实验计划描述了一种治疗策略,以克服治疗耐药性使用静止靶向,可控细胞毒性S。鼠伤寒。工程菌和辅助化疗的联合给药将通过更有效地杀死肿瘤中的所有癌细胞来提高治疗效率。这种增加的功效将减少全身毒性,防止局部复发,限制转移性疾病的有害影响,并增加预期寿命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NEIL S. FORBES其他文献
NEIL S. FORBES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NEIL S. FORBES', 18)}}的其他基金
Targeting epigenetic regulators using bacterial macromolecule delivery
使用细菌大分子递送靶向表观遗传调节因子
- 批准号:
8919315 - 财政年份:2014
- 资助金额:
$ 28.7万 - 项目类别:
Targeting epigenetic regulators using bacterial macromolecule delivery
使用细菌大分子递送靶向表观遗传调节因子
- 批准号:
9327990 - 财政年份:2014
- 资助金额:
$ 28.7万 - 项目类别:
Targeting epigenetic regulators using bacterial macromolecule delivery
使用细菌大分子递送靶向表观遗传调节因子
- 批准号:
8766518 - 财政年份:2014
- 资助金额:
$ 28.7万 - 项目类别:
Engineering Salmonella to be a targeted intratumoral anti-cancer therapeutic
将沙门氏菌改造为肿瘤内靶向抗癌治疗药物
- 批准号:
8032432 - 财政年份:2008
- 资助金额:
$ 28.7万 - 项目类别:
Engineering Salmonella to be a targeted intratumoral anti-cancer therapeutic
将沙门氏菌改造为肿瘤内靶向抗癌治疗药物
- 批准号:
7555373 - 财政年份:2008
- 资助金额:
$ 28.7万 - 项目类别:
Engineering Salmonella to be a targeted intratumoral anti-cancer therapeutic
将沙门氏菌改造为肿瘤内靶向抗癌治疗药物
- 批准号:
7383949 - 财政年份:2008
- 资助金额:
$ 28.7万 - 项目类别:
Microelectrode oxygenation control of tumor necrosis
微电极氧合控制肿瘤坏死
- 批准号:
6969827 - 财政年份:2005
- 资助金额:
$ 28.7万 - 项目类别:
Microelectrode oxygenation control of tumor necrosis
微电极氧合控制肿瘤坏死
- 批准号:
7140137 - 财政年份:2005
- 资助金额:
$ 28.7万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 28.7万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 28.7万 - 项目类别:
Studentship