Activation of PI Specific Phospholipase C Enzymes
PI 特异性磷脂酶 C 酶的激活
基本信息
- 批准号:7905539
- 负责人:
- 金额:$ 28.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-03-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:1,2-diacylglycerolActive SitesAffinityBacillus cereusBacillus thuringiensisBindingBinding ProteinsBinding SitesCatalysisCatalytic DomainCell NucleusCell ProliferationCell membraneCellsCharacteristicsChemistryComplexCytoplasmDeuteriumDiglyceridesDiseaseDockingEnzymesExhibitsFluorescenceFluorescence MicroscopyGoalsGrowthHumanHydrogenImmunocompromised HostIndividualInfectionInositol PhosphatesIntracellular MembranesIsoenzymesKineticsLipid BindingLipidsListeria monocytogenesLocationMapsMass Spectrum AnalysisMembraneMembrane ProteinsMethodsModelingMolecularOrganismPeptidesPeripheralPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhospholipasePhospholipase CPhospholipidsPhosphorusPhysiologicalProtein BindingProtein Kinase CProteinsRegulationRelaxationResearchResolutionRoleSecond Messenger SystemsSignal TransductionSiteSpectrum AnalysisSpin LabelsStagingSurfaceTechniquesTertiary Protein StructureTestingTranslatingVesicleVirulenceWaterWorkcell growthenzyme activityflexibilityinsightinterfacialmembrane modelnovelpathogenpublic health relevanceresearch studysecond messengersingle molecule
项目摘要
DESCRIPTION (provided by applicant): Mammalian phosphatidylinositol specific phospholipase C (PI-PLC) enzymes are multidomain proteins that are key regulators of phosphoinositide-signaling, They have critical roles in cell growth and proliferation. The bacterial PI-PLC enzymes, single domain proteins structurally equivalent to the catalytic domain of the mammalian enzymes, are usually secreted and often aid in the infection of target cells. Although the three proteins we study, Bacillus thuringiensis PI-PLC, Listeria monocytogenes PI-PLC, and mammalian PLC41, share a common structural framework for the catalytic domain, their interaction with and regulation by lipids is different and tied up with their individual physiological functions. Our long-term goal is to derive a molecular level picture of how these proteins dock on their target bilayer membranes. Specifically, we plan to (i) define and characterize specific nonsubstrate/allosteric phospholipid binding site(s) using high resolution field cycling 31P NMR relaxation experiments; (ii) orient these PI-PLCs on model membranes, particularly with respect to the mobile loops and hydrophobic ridge residues surrounding the active sites using NMR and HXMS methods; and (iii) extend PI-PLC binding studies, using FCS and single molecule fluorescence microscopy, from simple vesicles to more complex target cell-like membranes. The results from this work should show how these enzymes interact with different components of the membrane surface and how binding at nonsubstrate interfacial sites is translated to enhanced catalysis. L. monocytogenes is an intracellular pathogen of humans that can cause serious infections in immunocompromised individuals. Insight into how this PI-PLC, which contributes to virulence, interacts with intracellular membranes may provide alternate ways of slowing intracellular growth of this organism. Likewise some Bacillus cereus strains are opportunistic pathogens and PI-PLC cleavage of GPI-anchored proteins is likely to contribute to virulence. For PLC41, the emphasis is on autoinhibition of the enzyme by a disordered peptide region that may be an important way of controlling basal activity of the enzyme.
PUBLIC HEALTH RELEVANCE: This research will provide new insights into how phospholipids in membranes interact with and modulate the activities of enzymes that transiently bind to the membrane. The enzymes examined are a class of phospholipases that catalyze the same chemistry but have different physiological roles - one is mammalian and critical to cell growth and proliferation, while two are bacterial and involved in infectivity of the organisms. Characterizing the membrane interactions of the mammalian enzyme contributes to understanding what happens in cells in a variety of diseases where cell proliferation is unchecked. The studies of the bacterial enzymes may provide new treatments for slowing/inhibiting infections.
描述(申请人提供):哺乳动物磷脂酰肌醇特异性磷脂酶C(PI-PLC)酶是多结构域蛋白,是磷脂酰肌醇信号转导的关键调节因子,它们在细胞生长和增殖中起关键作用。细菌PI-PLC酶是一种结构上与哺乳动物酶的催化结构域相当的单域蛋白,通常是分泌的,通常有助于靶细胞的感染。尽管我们研究的三种蛋白质,苏云金芽孢杆菌PI-PLC、单核细胞增多性李斯特菌PI-PLC和哺乳动物PLC41具有共同的催化域结构框架,但它们与脂类的相互作用和调节是不同的,并且与各自的生理功能密切相关。我们的长期目标是得到这些蛋白质如何对接在它们的目标双层膜上的分子水平的图像。具体地说,我们计划(I)通过高分辨率场循环31P核磁共振弛豫实验来定义和表征特定的非底物/变构磷脂结合位点(S);(Ii)利用核磁共振和HXMS方法将这些PI-PLC定向到模型膜上,特别是关于活性中心周围的可移动环和疏水脊残基;以及(Iii)利用FCS和单分子荧光显微镜将PI-PLC结合研究从简单的囊泡扩展到更复杂的靶细胞样膜。这项工作的结果应该显示这些酶如何与膜表面的不同成分相互作用,以及非底物界面位置的结合如何转化为增强催化。单核细胞增多性乳杆菌是人类的一种细胞内病原体,可在免疫功能低下的人中引起严重感染。深入了解这种对毒力有贡献的PI-PLC是如何与细胞内膜相互作用的,可能会提供减缓这种生物细胞内生长的替代方法。同样,一些蜡状芽孢杆菌菌株是条件致病菌,PI-PLC裂解GPI锚定蛋白可能有助于毒力。对于PLC41,重点是无序多肽区对酶的自动抑制,这可能是控制酶基础活性的重要途径。
与公众健康相关:这项研究将为膜中磷脂如何与短暂结合到膜上的酶相互作用和调节活性提供新的见解。所研究的酶是一类催化相同化学成分但具有不同生理作用的磷脂酶--一种是哺乳动物的,对细胞生长和增殖至关重要,另两种是细菌的,与生物体的感染性有关。表征哺乳动物酶的膜相互作用有助于理解在各种疾病中细胞发生了什么,在这些疾病中,细胞增殖不受控制。细菌酶的研究可能为减缓/抑制感染提供新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Fedarko Roberts其他文献
Mary Fedarko Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Fedarko Roberts', 18)}}的其他基金
Purchase of two 400 MHz NMR Spectrometers
购买两台 400 MHz 核磁共振波谱仪
- 批准号:
7595662 - 财政年份:2009
- 资助金额:
$ 28.77万 - 项目类别:
ACTIVATION OF PI-SPECIFIC PHOSPHOLIPASE C ENZYMES
PI 特异性磷脂酶 C 酶的激活
- 批准号:
6520134 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
Activation of PI Specific Phospholipase C Enzymes
PI 特异性磷脂酶 C 酶的激活
- 批准号:
8445350 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
ACTIVATION OF PI-SPECIFIC PHOSPHOLIPASE C ENZYMES
PI 特异性磷脂酶 C 酶的激活
- 批准号:
6032515 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
ACTIVATION OF PI-SPECIFIC PHOSPHOLIPASE C ENZYMES
PI 特异性磷脂酶 C 酶的激活
- 批准号:
6363328 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
Activation of PI Specific Phospholipase C Enzymes
PI 特异性磷脂酶 C 酶的激活
- 批准号:
8248729 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
Activation of PI-Specific Phospholipase C Enzymes
PI 特异性磷脂酶 C 酶的激活
- 批准号:
6876830 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
Activation of PI-Specific Phospholipase C Enzymes
PI 特异性磷脂酶 C 酶的激活
- 批准号:
7026424 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
ACTIVATION OF PI-SPECIFIC PHOSPHOLIPASE C ENZYMES
PI 特异性磷脂酶 C 酶的激活
- 批准号:
6636372 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
Activation of PI-Specific Phospholipase C Enzymes
PI 特异性磷脂酶 C 酶的激活
- 批准号:
7210690 - 财政年份:2000
- 资助金额:
$ 28.77万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 28.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 28.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 28.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 28.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 28.77万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 28.77万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 28.77万 - 项目类别:
Discovery Grants Program - Individual