Statistical Methods for Next-Gen Sequencing in Disease Association Studies

疾病关联研究中下一代测序的统计方法

基本信息

  • 批准号:
    7943996
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

Statistical Methods for Next-Generation Sequencing in Disease Association Studies Through this project we propose to develop statistical approaches and software for genotype calling and association testing in next-generation sequence data. The field is driven by molecular advances that allow for affordable, massively parallel sequencing. The rapid development of statistical methods for next-generation sequence data in disease studies is necessary to keep pace with the advancing molecular technology. Next- generation sequencing is based on random, short-read technology; thus the coverage of any nucleotide is highly variable and subject to error. Distinguishing random error from truly variable sites is required for "SNP- calling". One step beyond this is identifying the individual's actual genotype at the site. This is a highly statistical problem and we have yet to see this problem addressed in a statistically rigorous manner. The solution that we propose, and what makes our approach novel, assumes that we have a sample of individuals, each with next-generation sequence data. We anticipate that sequencing may ultimately replace GWAS SNP arrays for disease-association studies. While this may be several years away for whole-genome sequencing, sequencing enough people individually for a small association study is already becoming practical with target capture arrays. We can leverage the information from a sample of individuals with next-generation sequence data to more accurately estimate an individual's genotype and the position-specific error rate. Our approach is to express the genotype probabilities and error rate in a likelihood framework. We can then use standard statistical theory to help us call genotypes. This approach should perform better than calling genotypes for a single individual at a time based on an arbitrary filter as is currently done. A distinct advantage of this statistical framework is that the uncertainty in the genotype calls can be incorporated directly into our disease-association tests (e.g., case-control and rare variant analysis). In this way we will increase power of our association tests and reduce bias due to error or systematic missingness. Incorporation of next-generation sequence data into the association tests provides a complete analysis pipeline from sequence to association.
疾病关联研究中下一代测序的统计方法 通过这个项目,我们建议开发用于基因型识别的统计方法和软件, 下一代序列数据中的关联测试。该领域是由分子的进步,允许 经济实惠的大规模平行测序下一代统计方法的快速发展 疾病研究中的序列数据是跟上先进分子技术步伐所必需的。下一篇: 代测序基于随机、短读技术;因此任何核苷酸的覆盖范围都是 易变且容易出错。区分随机误差与真正可变的位点是“SNP-1”所必需的。 呼唤”。除此之外的一个步骤是确定个体在该位点的实际基因型。这是一个高度 统计问题,我们还没有看到这个问题在统计上严格的方式处理。 我们提出的解决方案,以及使我们的方法新颖的原因,假设我们有一个样本, 每个人都有下一代的序列数据。我们预计,测序可能最终取代 用于疾病关联研究的GWAS SNP阵列。虽然这可能是几年后的全基因组 测序,对足够多的人进行单独测序,进行小关联研究, 目标捕捉阵列我们可以利用来自下一代个体样本的信息 序列数据来更准确地估计个体的基因型和位置特异性错误率。我们 方法是在一个似然框架中表达基因型概率和错误率。我们可以使用 标准的统计理论来帮助我们识别基因型。此方法的性能应优于调用 如目前所做的,基于任意过滤器一次针对单个个体的基因型。 这种统计框架的一个明显优点是,基因型调用中的不确定性可以被 直接结合到我们的疾病关联测试中(例如,病例对照和罕见变异分析)。在这 我们将增加关联测试的能力,减少由于错误或系统性缺失而导致的偏差。 将下一代序列数据整合到关联测试中提供了完整的分析管道 从序列到关联。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eden R. Martin其他文献

Acute leukemia in adult Hispanic Americans: a large-population study
成年西班牙裔美国人的急性白血病:一项大样本研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    R. Swords;J. Sznol;Roy Elias;Justin M. Watts;Arthur Zelent;Eden R. Martin;F. Vargas;S. Bethel;Erin Kobetz
  • 通讯作者:
    Erin Kobetz
Genome-wide association studies of LRRK2 modifiers of Parkinson's disease
帕金森病 LRRK2 修饰物的全基因组关联研究
  • DOI:
    10.1101/2020.12.14.20224378
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongbing Lai;B. Alipanahi;P. Fontanillas;Tae‐Hwi Schwantes‐An;J. Aasly;R. Alcalay;G. Beecham;Daniela Berg;S. Bressman;Alexis Brice;Kathrin Brockman;Lorraine N. Clark;M. Cookson;Sayantan Das;V. Deerlin;M. Farrer;Joanne Trinh;Thomas Gasser;S. Goldwurm;E. K. Gustavsson;Christine Klein;Anthony E. Lang;William J. Langston;J. Latourelle;Timothy Lynch;K. Marder;Connie Marras;Eden R. Martin;Cory Y. McLean;H. Mejia‐Santana;E. Molho;R. H. Myers;Karen Nuytemans;Laurie J. Ozelius;H. Payami;D. Raymond;E. Rogaeva;Michael P. Rogers;Owen A. Ross;A. Samii;R. Saunders;Birgitt Schüle;C. Schulte;William K. Scott;C. Tanner;Eduardo Tolosa;James E. Tomkins;Dolores Vilas;J. Trojanowski;R. Uitti;Jeffery M. Vance;N. Visanji;Z. Wszolek;C. Zabetian;A. Mirelman;Nir Giladi;A. Urtreger;P. Cannon;B. Fiske;Tatiana M. Foroud
  • 通讯作者:
    Tatiana M. Foroud
Genetic Variants of Microtubule Actin Cross-linking Factor 1 (MACF1) Confer Risk for Parkinson’s Disease
  • DOI:
    10.1007/s12035-016-9861-y
  • 发表时间:
    2016-03-28
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Xin Wang;Nuomin Li;Nian Xiong;Qi You;Jie Li;Jinlong Yu;Hong Qing;Tao Wang;Heather J. Cordell;Ole Isacson;Jeffery M. Vance;Eden R. Martin;Ying Zhao;Bruce M. Cohen;Edgar A. Buttner;Zhicheng Lin
  • 通讯作者:
    Zhicheng Lin
ABCA7 FRAMESHIFT DELETION ASSOCIATED WITH ALZHEIMER’S DISEASE IN AFRICAN AMERICANS
ABCA7 移码删除与非裔美国人阿尔茨海默病相关
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derek M. Dykxhoorn;H. N. Cukier;Brian W. Kunkle;Badri N Vardarajan;Sophie Rolati;K. Hamilton;Martin A. Kohli;Patrice L. Whitehead;D. Booven;Rosalyn Lang;Lindsay A Farrer;M. Cuccaro;Jeffery M. Vance;John R. Gilbert;Gary W Beecham;Eden R. Martin;R. Carney;Richard Mayeux;Gerard D Schellenberg;G. Byrd;J. Haines;M. Pericak
  • 通讯作者:
    M. Pericak
X-chromosome-wide association study for Alzheimer's disease
阿尔茨海默病的 X 染色体全关联研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julie Le Borgne;Lissette Gomez;Sami Heikkinen;N. Amin;S. Ahmad;Seung Hoan Choi;J. Bis;B. Grenier‐Boley;Omar Garcia Rodriguez;L. Kleineidam;Juan Young;Kumar Parijat Tripathi;Lily Wang;Achintya Varma;S. V. D. Lee;V. Damotte;I. Rojas;S. Palmal;R. Ghidoni;Victoria Fernandez;Patrick G. Kehoe;R. Frikke;Magda Tsolaki;P. Sánchez;K. Sleegers;M. Ingelsson;Jonathan Haines;Lindsay A Farrer;Richard Mayeux;Li;R. Sims;A. Destefano;Gerard D Schellenberg;Sudha Seshadri;Philippe Amouyel;Julie Williams;W. V. D. Flier;Alfredo Ramirez;Margaret Pericak;Ole A. Andreassen;Cornelia van Duijn;Mikko Hiltunen;Agustín Ruiz;José E Dupuis;Eden R. Martin;Jean;Brian W. Kunkle;C. Bellenguez
  • 通讯作者:
    C. Bellenguez

Eden R. Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eden R. Martin', 18)}}的其他基金

GLASS-AD: Global Latinos Sequencing Study for Alzheimer's Disease
GLASS-AD:全球拉丁裔阿尔茨海默病测序研究
  • 批准号:
    10650278
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Female Sexual Orientation GWAS
女性性取向 GWAS
  • 批准号:
    10197181
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Female Sexual Orientation GWAS
女性性取向 GWAS
  • 批准号:
    10435504
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Female Sexual Orientation GWAS
女性性取向 GWAS
  • 批准号:
    10627991
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Meta-Analysis of Male Sexual Orientation
男性性取向的荟萃分析
  • 批准号:
    9357379
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
Statistical Methods for Next-Gen Sequencing in Disease Association Studies
疾病关联研究中下一代测序的统计方法
  • 批准号:
    7853195
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
Statistical tests for association with X-linked genes
与 X 连锁基因关联的统计检验
  • 批准号:
    6904155
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
Statistical tests for association with X-linked genes
与 X 连锁基因关联的统计检验
  • 批准号:
    7210546
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
Statistical tests for association with X-linked genes
与 X 连锁基因关联的统计检验
  • 批准号:
    7026986
  • 财政年份:
    2005
  • 资助金额:
    $ 50万
  • 项目类别:
Candidate Genes and Complex Interactions in PD
PD 中的候选基因和复杂的相互作用
  • 批准号:
    6812934
  • 财政年份:
    2004
  • 资助金额:
    $ 50万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了