Single-molecule nanomagnetic assays for ultrasmall sample clinical diagnostics
用于超小样本临床诊断的单分子纳米磁性测定
基本信息
- 批准号:7938835
- 负责人:
- 金额:$ 47.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-24 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAntibody AffinityArchivesAreaAvidityBindingBiological AssayBiological MarkersBiopsyBiopsy SpecimenBiosensorCancer PrognosisCell SeparationCellsClinicalComplexDNADNA ProbesDataData QualityData Storage and RetrievalDetectionDevice DesignsDevicesDiagnosticEffectivenessFine needle aspiration biopsyFlushingFormalinFutureGenerationsGenomicsGoalsGrowthHeterogeneityHumanIndividualLabelLeadLegal patentMagnetismMalignant NeoplasmsMeasurementMedicalMessenger RNAMethodsMicroRNAsMiniaturizationModelingMolecularOutcomeParaffin EmbeddingPopulationProteinsProteomicsReadingResearchResolutionSamplingSensitivity and SpecificitySignal TransductionSorting - Cell MovementSpecificitySpecimenSurfaceSystemTarget PopulationsTechnologyTestingTissuesTransducersTranslational ResearchTranslationsUnited States National Institutes of HealthUniversitiesWorkbasecancer diagnosiscostdensitydesigndetectorexperiencegenome-wideimprovedinnovationinstrumentationmagnetic fieldmeltingmembermolecular recognitionnanolabelnanomagneticnanoparticlenanoscalenew technologyoutcome forecastparticleprofessorsensorsingle moleculesubmicrontechnology developmenttrend
项目摘要
DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (15) Translational Science and specific Challenge Topic, 15-RR-101 Applied Translational Technology Development. The challenges of cancer diagnosis and prognosis call for sensitive, specific, and economical detector systems. Rapid advances in genomics and oncogenomics, in particular, are opening a period of great expansion in the range and effectiveness of DNA- and RNA-based diagnostics. These trends, which are expected to continue for the foreseeable future, call for transducers compatible with hybridization assays and molecular binding, implementable in parallel formats, with high sensitivity and specificity for target molecules. While current biomolecular recognition technologies can carry out genome-wide profiling of clinical specimens, they require relatively large samples, at the nanogram and microgram levels, which are often not readily available. Sample amplification is an option but can lead to erroneous results, especially where ratios of different analytes' concentrations can be skewed by differential amplification. There exists a critical need for novel technologies for ultra-small clinical specimen analysis, which will enable the use of precious, limited-amount samples such as formalin-fixed paraffin embedded tissues, sorted sub-populations or fine needle aspirate biopsy (FNAB) samples. The goal of the proposed work is to develop a single-molecule nanomagnetic array sensor that will enable efficient analysis of such clinical samples. The specific objective is to build a nanomagnetic sensor array capable of sensing single 50nm magnetic labels and to demonstrate high-sensitivity biomolecular diagnostic assays applicable to ultra-small clinical specimens such as FNAB or sorted cell sub-populations. The sensitivity of the device to low-abundance microRNAs, mRNAs or proteins is expected to be unprecedentedly high, potentially at the single-molecule level. The ability to base measurements on only one or a few probe and target molecules will improve the quality of the data by suppressing avidity effects arising from multiple interactions, and can reveal genuine single-molecule heterogeneity in target populations not detectable by population-averaged measurements. The rationale for this research is that such a nanomagnetic sensor can be based on rapidly-advancing magnetic hard disk data storage technology, and can be relatively easily integrated into a practical sensor array with an extremely high density of individually-addressable sensors. The impact of this research is that it will enable a new generation of biosensors capable of highly reliable and sensitive detection and characterization of mRNA, miRNA and protein biomarkers. The proposed research will advance biomagnetic sensing into a highly versatile clinical diagnostic technology, which will offer ultrasensitive (single-molecule) molecular detection and high specificity via magnetic field pull off melting to suppress non-specific associations. This research is expected to enable a new generation of highly reliable molecular diagnostic instrumentation with significantly enhanced sensitivity and high specificity.
描述(由申请人提供):本申请涉及广泛的挑战领域(15)翻译科学和具体的挑战主题,15-RR-101应用翻译技术开发。癌症诊断和预后的挑战呼唤灵敏、特异和经济的探测器系统。特别是基因组学和肿瘤基因组学的快速发展,开启了一个基于DNA和RNA的诊断范围和有效性的巨大扩张期。这些趋势预计将在可预见的未来持续下去,这就要求换能器与杂交分析和分子结合兼容,可采用并行格式实施,对目标分子具有高灵敏度和特异性。虽然目前的生物分子识别技术可以对临床标本进行全基因组分析,但它们需要相对较大的纳克级和微克级样本,而这些样本往往不容易获得。样品放大是一种选择,但可能会导致错误的结果,特别是在不同分析物浓度的比率可能因差异扩增而发生偏差的情况下。迫切需要用于超小临床标本分析的新技术,这将使宝贵的、有限数量的样本得以使用,例如福尔马林固定的石蜡包埋组织、分类的亚群或细针抽吸活检(FNAB)样本。这项拟议工作的目标是开发一种单分子纳米磁性阵列传感器,使此类临床样本能够进行有效的分析。其具体目标是构建一种能够感测单个50 nm磁性标记的纳米磁性传感器阵列,并展示适用于超小型临床标本(如FNAb或分类细胞亚群)的高灵敏度生物分子诊断分析。该设备对低丰度的microRNAs、mRNAs或蛋白质的灵敏度预计将达到前所未有的高水平,可能是在单分子水平上。仅基于一个或几个探针和目标分子进行测量的能力将通过抑制多个相互作用引起的亲和力效应来提高数据质量,并可以揭示目标群体中真正的单分子异质性,而群体平均测量无法检测到。这项研究的基本原理是,这种纳米磁性传感器可以基于快速发展的磁硬盘数据存储技术,并且可以相对容易地集成到具有极高密度的可单独寻址的传感器的实用传感器阵列中。这项研究的影响是,它将使新一代生物传感器能够高度可靠和灵敏地检测和表征mRNA、miRNA和蛋白质生物标记物。这项拟议的研究将把生物磁传感推进到一种高度通用的临床诊断技术,它将提供超灵敏的(单分子)分子检测和高特异性,通过磁场拉出熔化来抑制非特异性关联。这项研究有望使新一代高度可靠的分子诊断仪器具有显著增强的灵敏度和高特异度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Litvinov其他文献
Dmitri Litvinov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Litvinov', 18)}}的其他基金
Single-molecule nanomagnetic assays for ultrasmall sample clinical diagnostics
用于超小样本临床诊断的单分子纳米磁性测定
- 批准号:
7827470 - 财政年份:2009
- 资助金额:
$ 47.82万 - 项目类别:
Development of nanomagnetic sensor array for High Throughput Screening(RMI)
开发用于高通量筛选(RMI)的纳米磁性传感器阵列
- 批准号:
7011780 - 财政年份:2005
- 资助金额:
$ 47.82万 - 项目类别:
Development of nanomagnetic sensor array for High Throughput Screening(RMI)
开发用于高通量筛选(RMI)的纳米磁性传感器阵列
- 批准号:
7125568 - 财政年份:2005
- 资助金额:
$ 47.82万 - 项目类别:
Development of nanomagnetic sensor array for High Throughput Screening(RMI)
开发用于高通量筛选(RMI)的纳米磁性传感器阵列
- 批准号:
7264514 - 财政年份:2005
- 资助金额:
$ 47.82万 - 项目类别:
相似海外基金
Investigating how natural (ligand) and non-natural (antibody) affinity and dimersiation states affect the natural (ligand) and non-natural (antibody)
研究天然(配体)和非天然(抗体)亲和力和二聚状态如何影响天然(配体)和非天然(抗体)
- 批准号:
2869950 - 财政年份:2023
- 资助金额:
$ 47.82万 - 项目类别:
Studentship
Evolution of antibody affinity modification in fishes
鱼类抗体亲和力修饰的演变
- 批准号:
RGPIN-2020-05979 - 财政年份:2022
- 资助金额:
$ 47.82万 - 项目类别:
Discovery Grants Program - Individual
Immunogenetics of antibody affinity
抗体亲和力的免疫遗传学
- 批准号:
RGPIN-2019-05047 - 财政年份:2022
- 资助金额:
$ 47.82万 - 项目类别:
Discovery Grants Program - Individual
Immunogenetics of antibody affinity
抗体亲和力的免疫遗传学
- 批准号:
RGPIN-2019-05047 - 财政年份:2021
- 资助金额:
$ 47.82万 - 项目类别:
Discovery Grants Program - Individual
Evolution of antibody affinity modification in fishes
鱼类抗体亲和力修饰的演变
- 批准号:
RGPIN-2020-05979 - 财政年份:2021
- 资助金额:
$ 47.82万 - 项目类别:
Discovery Grants Program - Individual
Immunogenetics of antibody affinity
抗体亲和力的免疫遗传学
- 批准号:
RGPIN-2019-05047 - 财政年份:2020
- 资助金额:
$ 47.82万 - 项目类别:
Discovery Grants Program - Individual
Evolution of antibody affinity modification in fishes
鱼类抗体亲和力修饰的演变
- 批准号:
RGPIN-2020-05979 - 财政年份:2020
- 资助金额:
$ 47.82万 - 项目类别:
Discovery Grants Program - Individual
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性
- 批准号:
10080587 - 财政年份:2020
- 资助金额:
$ 47.82万 - 项目类别:
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性
- 批准号:
10155411 - 财政年份:2020
- 资助金额:
$ 47.82万 - 项目类别:
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening: Aiming toward total in silico design of antibodies
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性:旨在实现抗体的全面计算机设计
- 批准号:
10603473 - 财政年份:2020
- 资助金额:
$ 47.82万 - 项目类别: