Mechanisms of Synaptic Integration in Central Neurons

中枢神经元突触整合机制

基本信息

  • 批准号:
    7688440
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Summary / Abstract The proposed experiments of this Merit Review competitive renewal are part of the effort by many labs to determine how central nervous system neurons encode their synaptic inputs. In particular, the experiments are designed to determine how specific neurons (or abnormal function of those neurons) contribute to synchronous network activity that occurs during both normal signal processing and during seizure activity. The major questions ask 'What temporal aspects of natural patterns of synaptic activity are most effective for driving a neuron's action potential firing?' and 'What are the governing underlying mechanisms?'. The focus is on the responses of principal cells in neocortex (pyramidal neurons) to local circuit activity. The convergent synaptic activity generated by cortical networks has a frequency spectrum similar to broad- band noise. We have preliminary data that the pyramidal neurons show resonant firing to this type of input. That is, specific frequency components of their input drive firing better then others. Two input frequencies cause the resonance: theta (~7 Hz) and fast ripple (~250 Hz). We also have preliminary evidence that interactions between frequency components in the input cause differences in the resonance (i.e. the resonance is nonlinear). Additional preliminary studies point to certain potassium conductance mechanisms as being critical for the type and amount of resonance a pyramidal neuron has. A mutation in the gene (KCNQ) for one of these potassium channels (Kv7) is known to cause some forms of human epilepsy. There are three sets of experiments. In the first we will determine the basic interactions of the input frequencies that result in resonant firing. In the second set we will determine the influence of dendritic filtering on the resonant firing. In the third set we will determine how the resonant firing is transmitted across synapses to the different targets of the pyramidal neurons. In all three sets of experiments we will determine the role of specific potassium channels on the resonance. The methods employ patch pipettes (or sharp electrodes in some experiments) to record from visualized neurons in brain slices. Neurons are stimulated in current clamp and dynamic clamp using computer-generated waves that simulate the statistics of ongoing synaptic activity generated by the local cortical circuit (focusing mostly on excitatory inputs). Potassium channel blockers and openers and receptor agonists and antagonists are applied to the neurons during the electrical recording. We also add artificial potassium conductances to neurons with a method we devised called spike-triggered dynamic clamp. Anatomical classification of neurons is done by intracellular staining with biocytin. The second set of experiments uses photolysis to uncage glutamate to stimulate the dendrites. In the third set of experiments we simultaneously record from synaptically connected pairs of neurons. PUBLIC HEALTH RELEVANCE: Potential Impact on Veterans Health Care Traumatic brain injury is a major cause of epilepsy in our veteran patient population. Epilepsy caused by injury to the neocortex is hard to manage medically and the surgical options are more restricted than for temporal lobe epilepsy. So we need to find better ways to treat this problem. Particular frequency components of neocortical network activity are specifically associated with seizures and promote their initiation and propagation. Other frequencies may be suppressive. We expect that the proposed studies will close major gaps in our basic understanding of both normal and pathological neocortical oscillations and provide a rational basis for the design of new treatments for epilepsy.
描述(由申请人提供): 项目摘要/摘要 本次优点评审竞争性更新中提出的实验是许多实验室为确定中枢神经系统神经元如何编码其突触输入而做出的努力的一部分。特别是,这些实验旨在确定特定神经元(或这些神经元的异常功能)如何促进正常信号处理和癫痫活动期间发生的同步网络活动。主要问题是“突触活动自然模式的哪些时间方面对于驱动神经元的动作电位放电最有效?”和“管理的根本机制是什么?”。 重点是新皮质主要细胞(锥体神经元)对局部回路活动的反应。皮质网络产生的会聚突触活动具有类似于宽带噪声的频谱。我们有初步数据表明锥体神经元对这种类型的输入表现出共振放电。也就是说,其输入驱动器的特定频率分量比其他分量发射得更好。两个输入频率会引起谐振:theta (~7 Hz) 和快速纹波 (~250 Hz)。我们还有初步证据表明,输入中频率分量之间的相互作用会导致谐振差异(即谐振是非线性的)。其他初步研究指出某些钾电导机制对于锥体神经元共振的类型和数量至关重要。已知这些钾通道 (Kv7) 之一的基因 (KCNQ) 突变会导致某些形式的人类癫痫。 一共有三组实验。首先,我们将确定导致谐振发射的输入频率的基本相互作用。在第二组中,我们将确定树突滤波对谐振点火的影响。在第三组中,我们将确定共振放电如何通过突触传输到锥体神经元的不同目标。在所有三组实验中,我们将确定特定钾通道对共振的作用。 这些方法使用贴片吸管(或某些实验中的锋利电极)来记录脑切片中可视化的神经元。使用计算机生成的波在电流钳和动态钳中刺激神经元,这些波模拟由局部皮质电路生成的持续突触活动的统计数据(主要集中于兴奋性输入)。在电记录过程中,将钾通道阻断剂和开放剂以及受体激动剂和拮抗剂应用于神经元。我们还通过我们设计的一种称为尖峰触发动态钳的方法向神经元添加人工钾电导。神经元的解剖学分类是通过生物胞素的细胞内染色来完成的。第二组实验利用光解作用释放谷氨酸以刺激树突。在第三组实验中,我们同时记录突触连接的神经元对。 公共卫生相关性: 对退伍军人医疗保健的潜在影响 创伤性脑损伤是退伍军人患者群体中癫痫的主要原因。新皮质损伤引起的癫痫很难通过药物治疗,而且手术选择比颞叶癫痫更受限制。所以我们需要找到更好的方法来治疗这个问题。新皮质网络活动的特定频率成分与癫痫发作特别相关,并促进癫痫发作的发生和传播。其他频率可能会受到抑制。我们期望所提出的研究将弥补我们对正常和病理性新皮质振荡的基本理解的主要差距,并为癫痫新疗法的设计提供合理的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM J SPAIN其他文献

WILLIAM J SPAIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM J SPAIN', 18)}}的其他基金

Mechanisms of Synaptic Integration in Central Neurons
中枢神经元突触整合机制
  • 批准号:
    8258643
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Mechanisms of Synaptic Integration in Central Neurons
中枢神经元突触整合机制
  • 批准号:
    8540694
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Mechanisms of Synaptic Integration in Central Neurons
中枢神经元突触整合机制
  • 批准号:
    7786225
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Mechanisms of Synaptic Integration in Central Neurons
中枢神经元突触整合机制
  • 批准号:
    9275316
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Mechanisms of Synaptic Integration in Central Neurons
中枢神经元突触整合机制
  • 批准号:
    8195900
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Mechanisms of Synaptic Integration in Central Neurons
中枢神经元突触整合机制
  • 批准号:
    8966611
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
POSTSYNAPTIC TRANSDUCTION IN THE COCHLEAR NUCLEUS
耳蜗核中的突触后转导
  • 批准号:
    2127504
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
POSTSYNAPTIC TRANSDUCTION IN THE COCHLEAR NUCLEUS
耳蜗核中的突触后转导
  • 批准号:
    2127503
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
POSTSYNAPTIC TRANSDUCTION IN THE COCHLEAR NUCLEUS
耳蜗核中的突触后转导
  • 批准号:
    2430094
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
SEIZURE MECHANISMS IN NEOCORTEX
新皮质的癫痫机制
  • 批准号:
    3083932
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了