Impact of Fluid versus Solid Stresses on Air-Blood Integrity
流体与固体应力对气血完整性的影响
基本信息
- 批准号:7750100
- 负责人:
- 金额:$ 3.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdult Respiratory Distress SyndromeAirAir MovementsAlveolarAlveolar sacAlveolusBackBasal CellBiological AssayBloodBlood - brain barrier anatomyBlood-Air BarrierBrainCell Culture TechniquesCell LineCell SurvivalCellsCellular MembraneCessation of lifeClassificationClinicalCoculture TechniquesCultured CellsDevelopmentDimensionsDuct (organ) structureElectrical ResistanceElectrodesEndothelial CellsEngineeringEnvironmental air flowEpithelialEpithelial CellsEventExhibitsExperimental DesignsFluorocarbonsGenetic Complementation TestGiftsHumanIn VitroInfantInjuryLeadLifeLiquid VentilationLiquid substanceLungMDCK cellMeasurementMeasuresMechanical StressMechanical ventilationMechanicsMembraneMeniscus structure of jointMicrofluidicsModelingMusMyoblastsNeonatalPathologyPatientsPermeabilityPhenotypePhysiologicalPlayPulmonary Gas ExchangeRelaxationResearchResistanceRespiratory distressRoleSideSolidStressStretchingStudy modelsSumSymptomsSystemTechnologyTestingTight JunctionsTimeTissue EngineeringVentilator-induced lung injuryVolutraumabasecell injurycell typeelectric impedancefluid flowimprovedin vitro Modelin vivoinjured airwaymonolayerpoly(dimethylsiloxane)pressureresponsesurfactanttime use
项目摘要
DESCRIPTION (provided by applicant): Mechanical ventilation is a crucial therapy for patients with acute respiratory distress syndrome (ARDS); however, improper ventilation has been shown to promote further cellular-level injury, leading to an exacerbation of ARDS-like symptoms, termed ventilator-induced lung injury (VILI). Cellular-level damage found in VILI is hypothesized to result from a combination of cyclic and fluidic mechanical stresses generated as atelectactic alveoli collapse and re-open. Solid mechanical stress (volutrauma) occurs as epithelial cells are exposed to the cyclic stretching and relaxation of the alveolus during over-expansion and contraction. The role of fluid mechanical stress in the breakdown of air-blood barrier integrity has been suggested based upon observations during liquid ventilation treatment. In liquid ventilation the alveolus is completely filled with perfluorocarbons, effectively eliminating the air-liquid interface responsible for most fluid mechanical stresses. These in vivo studies suggest that volutrauma alone is not sufficient to cause damage to the degree of air-blood barrier damage seen in VILI, but the lack of in vitro models capable of replicating fluid mechanical stress has limited research on fluid stress in ARDS-pathology. Recent advances in microfluidic fabrication have allowed in vitro study on the role fluid mechanical stress in the development of airway injuries. Similarly, as fluid is redistributed within an edematous alveolus, we hypothesize that high fluid mechanical stresses will be generated at the resulting air-liquid interface. This air-liquid interface moves in a cyclic fashion as alveolar pressure gradients are generated during mechanical ventilation. The small size of alveolar sacs and ducts enables shearing conditions at the air-liquid interface to cause cellular damage and death. The impact of these fluid mechanical stresses independently and in combination with cyclic stretching (solid mechanical) has been suggested by in vivo studies but has not been confirmed. What is required is a systematic study of the effect on alveolar epithelial cells of fluid mechanical stresses individually and in combination with solid mechanical stresses (stretch). Current systems lack the ability to simultaneously study the effects of both stretch and shear. This project will fill this gap by creating a micro- tissue engineered alveoli with a cellular air-blood interface where physiological fluid mechanical events can be recreated over the alveolar epithelial cells in a highly controlled in vitro format. As an initial application of this micro-engineered alveoli, I will study the effects of fluid flow and cyclic stretch independently and in combination. This proposal will specifically test the hypothesis that fluid mechanical stress damages the integrity of the air-blood barrier through a mechanism independent of mechanical cell stretching.
描述(由申请人提供):机械通气是急性呼吸窘迫综合征(ARDS)患者的关键治疗方法;然而,不适当的通气已被证明会促进进一步的细胞水平损伤,导致ARDS样症状加重,称为呼吸机诱导的肺损伤(VILI)。在VILI中发现的细胞水平损伤被假设是由于不定向肺泡塌陷和重新打开时产生的循环和流体机械应力的组合。当上皮细胞在过度扩张和收缩期间暴露于肺泡的周期性拉伸和松弛时,发生固体机械应力(体积创伤)。根据液体通气治疗期间的观察,已经提出了流体机械应力在气-血屏障完整性破坏中的作用。在液体通气中,肺泡完全充满全氟化碳,有效地消除了造成大多数流体机械应力的气液界面。这些体内研究表明,单独的体积创伤不足以造成VILI中所见的空气-血液屏障损伤程度的损伤,但缺乏能够复制流体机械应力的体外模型限制了对ARDS病理学中流体应力的研究。微流控制造的最新进展允许在体外研究流体机械应力在气道损伤发展中的作用。类似地,由于流体在水肿的肺泡内重新分布,我们假设在所得的气液界面处将产生高流体机械应力。当机械通气期间产生肺泡压力梯度时,该空气-液体界面以循环方式移动。肺泡囊和导管的小尺寸使得在气液界面处的剪切条件能够引起细胞损伤和死亡。这些流体机械应力的影响独立和结合循环拉伸(固体机械)已提出了体内研究,但尚未得到证实。所需要的是一个系统的研究对肺泡上皮细胞的流体机械应力单独和固体机械应力(拉伸)相结合的影响。目前的系统缺乏同时研究拉伸和剪切效应的能力。该项目将通过创建具有细胞气-血界面的微组织工程化肺泡来填补这一空白,其中生理流体机械事件可以以高度受控的体外形式在肺泡上皮细胞上重现。作为这种微工程肺泡的初步应用,我将研究流体流动和周期性拉伸的影响独立和组合。该提案将专门测试流体机械应力通过独立于机械细胞拉伸的机制破坏气-血屏障完整性的假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas J Douville其他文献
Nicholas J Douville的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas J Douville', 18)}}的其他基金
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
- 批准号:
10689663 - 财政年份:2022
- 资助金额:
$ 3.33万 - 项目类别:
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
- 批准号:
10349621 - 财政年份:2022
- 资助金额:
$ 3.33万 - 项目类别:
相似海外基金
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6564818 - 财政年份:2001
- 资助金额:
$ 3.33万 - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6410976 - 财政年份:2000
- 资助金额:
$ 3.33万 - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6418789 - 财政年份:2000
- 资助金额:
$ 3.33万 - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6302122 - 财政年份:1999
- 资助金额:
$ 3.33万 - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6309780 - 财政年份:1999
- 资助金额:
$ 3.33万 - 项目类别:
CLINICAL MODELS OF THE ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征的临床模型
- 批准号:
6109540 - 财政年份:1998
- 资助金额:
$ 3.33万 - 项目类别:
ADHESION MOLECULES IN ADULT RESPIRATORY DISTRESS SYNDROME
成人呼吸窘迫综合征中的粘附分子
- 批准号:
6265845 - 财政年份:1998
- 资助金额:
$ 3.33万 - 项目类别: