Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
基本信息
- 批准号:10689663
- 负责人:
- 金额:$ 16.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAcute Renal Failure with Renal Papillary NecrosisAdoptionAffectAlgorithmsAnesthesia proceduresAnesthesiologyApolipoprotein EAssessment toolBenchmarkingBioinformaticsBoard CertificationCaringChronicClassificationClinicalClinical DataClinical ResearchComplexComplicationCritical CareDataData ScienceDevelopmentDiagnosisDiagnosticDiseaseDoctor of PhilosophyElectronic Health RecordEnsureEnvironmentExposure toFamilyFrequenciesGeneticGenomicsGoalsGrowthHealth PersonnelHeritabilityHospitalsIndividualInformation SystemsInjury to KidneyInstitutionInternationalInvestigationKnowledgeLaboratoriesLearningMedicalMedicineMentorsMentorshipMethodologyMichiganModelingMorbidity - disease rateNephrologyOperative Surgical ProceduresOutcomeOutcomes ResearchPatient-Focused OutcomesPatientsPeptidyl-Dipeptidase APerioperativePerioperative complicationPharmacologic SubstancePhysiciansPopulationPostoperative PeriodPrecision Medicine InitiativePreventionProbabilityProceduresProcessProviderPublishingRecordsRecoveryResearchRiskRisk AssessmentRisk FactorsRoleSample SizeScientistTNF geneTechniquesTestingTimeTrainingTraining ProgramsUnited States National Institutes of HealthUniversitiesUpdateVariantVocational Guidanceclinical riskclinical trainingclinically significantcohortdiverse datagenetic analysisgenetic informationgenetic variantgenome wide association studygenomic datagenomic predictorsimprovedkidney dysfunctionmembermortalitynext generationnovelpatient variabilitypolygenic risk scoreprediction algorithmpredictive modelingpublic health relevancerisk predictionrisk stratificationtrait
项目摘要
ABSTRACT
Candidate: Dr. Nicholas Douville is a critical care anesthesiologist with board certification in anesthesiology at
the University of Michigan. Through completion of the Medical-Scientist Training Program (MSTP) and clinical
training in Anesthesiology and Critical Care Medicine, Dr. Douville has developed expertise in bioinformatics
and perioperative outcomes research. This proposal builds on Dr. Douville’s expertise, providing protected time
for training in bioinformatics, data science, and statistical techniques necessary to drive forward the prediction
of patients at risk for postoperative acute kidney injury (poAKI).
Environment: The University of Michigan is the coordinating center for the Multicenter Perioperative Outcomes
Group (MPOG), an international consortium of over 50 anesthesiology and surgical departments with
perioperative information systems. Dr. Sachin Kheterpal, MD, MBA is the primary mentor for Dr. Douville, and is
the Director for MPOG and ex-member of the NIH Precision Medicine Initiative Advisory Panel. The proposed
research will be completed under the guidance of Dr. Kheterpal, as well as co-mentors Cristen Willer, PhD
(genetics) and Michael Heung, MD (nephrology), and Daniel Clauw, MD (general career guidance).
Background: Acute Kidney Injury (AKI) occurs after 6-13% of non-cardiac procedures, and is associated with a
six-fold increase in postoperative mortality. Numerous metrics for identifying at-risk patients have been
developed incorporating preoperative and intraoperative data. Family and linkage studies have demonstrated
renal dysfunction to be a heritable trait, however, the specific genetic underpinnings of acute, as opposed to
chronic, kidney injury has only recently been explored in the perioperative period. These studies were limited
by small sample size, did not consistently identify variants, and failed to utilize advanced genetic analysis, such
as polygenic risk scores (PRS). Furthermore, predictive algorithms for poAKI fail to incorporate any genetic
data, despite evidence that this may explain a substantial portion of the overall risk.
Research: Our goal is to assist perioperative providers in improving patient outcomes through a unified
platform that identifies patient attributes that may affect their care and stratifies the risk of key perioperative
complications. Our proposed algorithm will combine clinical information (divided into preoperative and
intraoperative data) with genetic information to identify patients with greater than baseline risk for developing
poAKI. We will validate our methodology using clinical and genetic data from our institutional Michigan
Genomics Initiative (MGI), where we have genetic data on over 70,000 individuals who have had surgery at the
University of Michigan. We will first develop a polygenic risk score for poAKI (Aim 1). The polygenic risk score
(developed in Aim 1) will then be integrated with other variables from the electronic health record (EHR) to
provide a comprehensive risk assessment which will be benchmarked against a validated metric (Aim 2).
抽象的
候选人:Nicholas Douville 博士是一名重症监护麻醉师,拥有麻醉学委员会认证
密歇根大学。通过完成医学科学家培训计划(MSTP)和临床
Douville 博士接受过麻醉学和重症监护医学方面的培训,积累了生物信息学方面的专业知识
和围手术期结果研究。该提案建立在 Douville 博士的专业知识之上,提供受保护的时间
用于推动预测所需的生物信息学、数据科学和统计技术方面的培训
有术后急性肾损伤(poAKI)风险的患者。
环境:密歇根大学是多中心围手术期结果的协调中心
集团 (MPOG),一个由 50 多个麻醉科和外科科室组成的国际联盟,
围手术期信息系统。 Sachin Kheterpal 博士(医学博士、工商管理硕士)是 Douville 博士的主要导师,
MPOG 主任和 NIH 精准医学计划咨询小组前成员。拟议的
研究将在 Kheterpal 博士以及共同导师 Cristen Willer 博士的指导下完成
(遗传学)、Michael Heung 医学博士(肾病学)和 Daniel Clauw 医学博士(一般职业指导)。
背景:急性肾损伤 (AKI) 发生在 6-13% 的非心脏手术后,并且与
术后死亡率增加六倍。许多用于识别高危患者的指标已被
结合术前和术中数据开发。家庭和联系研究表明
肾功能障碍是一种可遗传的特征,然而,急性肾功能障碍的特定遗传基础,与
最近才在围手术期探索慢性肾损伤。这些研究是有限的
由于样本量小,无法一致地识别变异,并且未能利用先进的遗传分析,例如
作为多基因风险评分(PRS)。此外,poAKI 的预测算法未能纳入任何遗传因素
尽管有证据表明这可以解释整体风险的很大一部分。
研究:我们的目标是通过统一的方法协助围手术期提供者改善患者的治疗结果
该平台可识别可能影响护理的患者属性并对关键围手术期风险进行分层
并发症。我们提出的算法将结合临床信息(分为术前和
术中数据)和遗传信息,以识别具有高于基线风险的患者
波阿基。我们将使用我们密歇根机构的临床和遗传数据来验证我们的方法
基因组计划 (MGI),我们拥有超过 70,000 名在该中心接受过手术的个体的基因数据
密歇根大学。我们将首先开发 poAKI 的多基因风险评分(目标 1)。多基因风险评分
(在目标 1 中开发)将与电子健康记录 (EHR) 中的其他变量集成到
提供全面的风险评估,该评估将以经过验证的指标为基准(目标 2)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas J Douville其他文献
Nicholas J Douville的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas J Douville', 18)}}的其他基金
Predicting Postoperative Acute Kidney Injury through Integration of Genetics and Electronic Health Records
通过整合遗传学和电子健康记录来预测术后急性肾损伤
- 批准号:
10349621 - 财政年份:2022
- 资助金额:
$ 16.74万 - 项目类别:
Impact of Fluid versus Solid Stresses on Air-Blood Integrity
流体与固体应力对气血完整性的影响
- 批准号:
7750100 - 财政年份:2009
- 资助金额:
$ 16.74万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 16.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Operating Grants














{{item.name}}会员




