Generation of an In Vivo Human Genome Transcriptional Enhancer Dataset

体内人类基因组转录增强子数据集的生成

基本信息

项目摘要

DESCRIPTION (provided by applicant): Our ability to identify the majority of exons in the human genome has been dramatically facilitated by the availability of extensive experimental data (EST, cDNA, and protein sequences) thereby providing training sets for the development of effective algorithms for the cfe novo prediction of such elements. In stark contrast, the vocabulary of gene regulatory regions in the human genome remains poorly defined, in large part, due to the lack of parallel experimental training sets for these sequences. Recent advances in our ability to predict which non-coding sequences have a higher likelihood of acting as transcriptional enhancers based on deep evolutionary conservation have provided some leverage for addressing this problem. In preliminary studies, we have examined 150 extremely conserved non-coding sequences in a transgenic mouse reporter assay and demonstrate that 58 of these sequences have distinct tissue specific enhancer activity. With this background, we propose here to couple our expertise in comparative genomics and high throughput mouse transgenesis to define the enhancer activity of 1,500 deeply conserved non-coding elements located throughout the human genome. We will make the results of our in vivo studies publicly available through an online database with extensive search capabilities, allowing users to bin sequences producing similar expression patterns to identify shared sequence features. These datasets will provide an essential resource for a broad group of investigators in computational, developmental, and clinical biology focused on deciphering the rules that govern human gene expression. Accordingly, this grant aims to classify the gene regulatory properties of non-coding DNA in the human genome through: (1) the characterization of 1,500 extremely conserved human DNA fragments for spatial enhancer activity in transgenic mice and (2) the development of a publicly available in vivo enhancer database to display these results. In addition, to provide the bioinformatic community with a means to test ab initio predictions of enhancers based on their analyses of our data generated in Aim 1, we further propose to (3) test 15-20 predicted enhancers by outside investigators per year in our transgenic mouse system. Lay Person Summary: The generation of the entire human genome sequence serves as a routine starting point for a huge investigator base and has aided in defining the majority of genes in our genome. However, our understanding of the sequences that regulate these genes is meager, despite their presumed alterations in human disease. Here, we propose to leverage human-fish genome comparisons to identify deeply conserved non-gene sequences and to test their ability to act as gene regulatory sequences in transgenic mice. Such a community resource is expected to significantly fill our void in gene regulatory annotation of the human genome and to decipher their mutation as a cause of human disease. .
描述(由申请人提供):大量实验数据(EST、cDNA 和蛋白质序列)的可用性极大地促进了我们识别人类基因组中大多数外显子的能力,从而为开发用于此类元件的 cfe novo 预测的有效算法提供了训练集。形成鲜明对比的是,人类基因组中基因调控区域的词汇仍然没有明确定义,这在很大程度上是由于缺乏这些序列的平行实验训练集。基于深度进化保守性,我们预测哪些非编码序列更有可能充当转录增强子的能力的最新进展为解决这一问题提供了一些手段。在初步研究中,我们在转基因小鼠报告基因测定中检查了 150 个极其保守的非编码序列,并证明其中 58 个序列具有不同的组织特异性增强子活性。在此背景下,我们建议将我们在比较基因组学和高通量小鼠转基因方面的专业知识结合起来,以确定位于整个人类基因组中 1,500 个深度保守的非编码元件的增强子活性。我们将通过具有广泛搜索功能的在线数据库公开我们的体内研究结果,允许用户对产生相似表达模式的序列进行分类,以识别共享的序列特征。这些数据集将为计算、发育和临床生物学领域的广大研究人员提供重要资源,重点是破译人类基因表达的规则。因此,这笔赠款旨在通过以下方式对人类基因组中非编码 DNA 的基因调控特性进行分类:(1) 对转基因小鼠中空间增强子活性的 1,500 个极其保守的人类 DNA 片段进行表征,以及 (2) 开发一个公开的体内增强子数据库来显示这些结果。此外,为了向生物信息学界提供一种方法,根据他们对目标 1 中生成的数据的分析来测试增强子的从头预测,我们进一步建议 (3) 每年由外部研究人员在我们的转基因小鼠系统中测试 15-20 个预测的增强子。外行总结:整个人类基因组序列的生成是庞大的研究人员基础的常规起点,并有助于定义我们基因组中的大多数基因。然而,尽管推测这些基因会改变人类疾病,但我们对调节这些基因的序列了解甚少。在这里,我们建议利用人类与鱼类基因组比较来识别深度保守的非基因序列,并测试它们在转基因小鼠中充当基因调控序列的能力。这样的社区资源预计将显着填补我们在人类基因组基因调控注释方面的空白,并破译其突变作为人类疾病的原因。 。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Len Alexander Pennacchio其他文献

Len Alexander Pennacchio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Len Alexander Pennacchio', 18)}}的其他基金

Evaluating the Impact of Mutations in Distant-Acting Enhancers in Structural Birth Defects
评估远效增强子突变对结构性出生缺陷的影响
  • 批准号:
    10826564
  • 财政年份:
    2023
  • 资助金额:
    $ 35.22万
  • 项目类别:
In vivo Characterization of Regulatory Variant Pathogenicity in Congenital Heart Disease
先天性心脏病调节变异致病性的体内表征
  • 批准号:
    10390962
  • 财政年份:
    2022
  • 资助金额:
    $ 35.22万
  • 项目类别:
In vivo Characterization of Regulatory Variant Pathogenicity in Congenital Heart Disease
先天性心脏病调节变异致病性的体内表征
  • 批准号:
    10543797
  • 财政年份:
    2022
  • 资助金额:
    $ 35.22万
  • 项目类别:
In Vivo Characterization of Major ENCODE-Predicted Classes of Noncoding Elements
主要编码预测非编码元素类别的体内表征
  • 批准号:
    10241190
  • 财政年份:
    2017
  • 资助金额:
    $ 35.22万
  • 项目类别:
Genome-Wide Resources for Transcriptional Enhancers Active in the Human Heart
人类心脏中活跃的转录增强子的全基因组资源
  • 批准号:
    9025585
  • 财政年份:
    2015
  • 资助金额:
    $ 35.22万
  • 项目类别:
Genome-Wide Resources for Transcriptional Enhancers Active in the Human Heart
人类心脏中活跃的转录增强子的全基因组资源
  • 批准号:
    8756851
  • 财政年份:
    2015
  • 资助金额:
    $ 35.22万
  • 项目类别:
In Vivo Analysis of a Noncoding Susceptibility Region for Coronary Artery Disease
冠状动脉疾病非编码易感区的体内分析
  • 批准号:
    7713519
  • 财政年份:
    2009
  • 资助金额:
    $ 35.22万
  • 项目类别:
In Vivo Analysis of a Noncoding Susceptibility Region for Coronary Artery Disease
冠状动脉疾病非编码易感区的体内分析
  • 批准号:
    7932876
  • 财政年份:
    2009
  • 资助金额:
    $ 35.22万
  • 项目类别:
A High-Resolution Enhancer Atlas of the Developing Forebrain
前脑发育的高分辨率增强器图谱
  • 批准号:
    7507860
  • 财政年份:
    2008
  • 资助金额:
    $ 35.22万
  • 项目类别:
A High-Resolution Enhancer Atlas of the Developing Forebrain
前脑发育的高分辨率增强器图谱
  • 批准号:
    7694253
  • 财政年份:
    2008
  • 资助金额:
    $ 35.22万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了