In Vivo Characterization of Major ENCODE-Predicted Classes of Noncoding Elements

主要编码预测非编码元素类别的体内表征

基本信息

项目摘要

PROJECT SUMMARY We propose to establish a Center for In Vivo Characterization of ENCODE Elements (CIViC) as part of ENCODE Phase 4. Understanding the function of the 98% of the human genome that is noncoding remains one of the most pressing challenges in genomics. The ENCODE Program has enabled major progress toward obtaining genome-wide molecular signatures associated with the human and mouse genome. During ENCODE3 our group contributed to the mapping of enhancer-associated marks, DNA methylation, and transcriptomes from multiple mouse tissues across closely spaced time points of embryogenesis, resulting in >750 datasets defining the in vivo epigenomic landscape during mammalian development. Our group has also characterized over 3,000 candidate enhancer sequences in transgenic mouse assays, including more than 400 through our participation in ENCODE2 and ENCODE3. Despite this progress, enhancers are only one of many noncoding molecular functions that have been inferred from ENCODE data. Other major proposed categories of noncoding sequences identified through ENCODE and other publicly available data sets include DNA elements with predicted functions, such as “super-enhancers” (very large enhancers with possibly distinct functions) or chromatin domain boundary elements. They also include sequence classes of unknown function primarily defined by specific assays, such as differentially methylated regions (DMRs). The functional impact of these different classes of noncoding sequences on organismal biology and human health remains minimally explored, representing a major limitation of the ENCODE encyclopedia. The Center for In Vivo Characterization of ENCODE Elements will use CRISPR/Cas9 genome editing to systematically explore the biological significance of several classes of noncoding function based on ENCODE3 data. Leveraging the streamlined set of mouse engineering tools available in our laboratory, we will: 1. Perform integrative analysis of ENCODE3 and complementary data sets to identify and prioritize representative sequences from 3 different classes of noncoding elements (enhancers and super-enhancers, boundary elements, DMRs); 2. Systematically delete a total of 48 representative sequences in mice and perform RNA-seq and gross organismal phenotyping to understand the in vivo consequences of these deletions; 3. Continue to make transgenic enhancer characterization capabilities available to ENCODE investigators to validate and calibrate enhancer prediction methods. We will also use transgenics and CRISPR knock-in editing to test human disease-associated alleles of ENCODE-predicted enhancer elements. All efforts will be closely coordinated with other ENCODE4 functional characterization groups to focus on common sets of elements to be characterized using the full ENCODE-wide arsenal of in vitro and in vivo characterization methods. Our results will provide an understanding of the in vivo significance of different classes of noncoding elements and thereby substantially increase the value of the ENCODE encyclopedia.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Len Alexander Pennacchio其他文献

Len Alexander Pennacchio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Len Alexander Pennacchio', 18)}}的其他基金

Evaluating the Impact of Mutations in Distant-Acting Enhancers in Structural Birth Defects
评估远效增强子突变对结构性出生缺陷的影响
  • 批准号:
    10826564
  • 财政年份:
    2023
  • 资助金额:
    $ 135.88万
  • 项目类别:
In vivo Characterization of Regulatory Variant Pathogenicity in Congenital Heart Disease
先天性心脏病调节变异致病性的体内表征
  • 批准号:
    10390962
  • 财政年份:
    2022
  • 资助金额:
    $ 135.88万
  • 项目类别:
In vivo Characterization of Regulatory Variant Pathogenicity in Congenital Heart Disease
先天性心脏病调节变异致病性的体内表征
  • 批准号:
    10543797
  • 财政年份:
    2022
  • 资助金额:
    $ 135.88万
  • 项目类别:
Genome-Wide Resources for Transcriptional Enhancers Active in the Human Heart
人类心脏中活跃的转录增强子的全基因组资源
  • 批准号:
    9025585
  • 财政年份:
    2015
  • 资助金额:
    $ 135.88万
  • 项目类别:
Genome-Wide Resources for Transcriptional Enhancers Active in the Human Heart
人类心脏中活跃的转录增强子的全基因组资源
  • 批准号:
    8756851
  • 财政年份:
    2015
  • 资助金额:
    $ 135.88万
  • 项目类别:
In Vivo Analysis of a Noncoding Susceptibility Region for Coronary Artery Disease
冠状动脉疾病非编码易感区的体内分析
  • 批准号:
    7713519
  • 财政年份:
    2009
  • 资助金额:
    $ 135.88万
  • 项目类别:
In Vivo Analysis of a Noncoding Susceptibility Region for Coronary Artery Disease
冠状动脉疾病非编码易感区的体内分析
  • 批准号:
    7932876
  • 财政年份:
    2009
  • 资助金额:
    $ 135.88万
  • 项目类别:
Generation of an In Vivo Human Genome Transcriptional Enhancer Dataset
体内人类基因组转录增强子数据集的生成
  • 批准号:
    7941543
  • 财政年份:
    2009
  • 资助金额:
    $ 135.88万
  • 项目类别:
A High-Resolution Enhancer Atlas of the Developing Forebrain
前脑发育的高分辨率增强器图谱
  • 批准号:
    7507860
  • 财政年份:
    2008
  • 资助金额:
    $ 135.88万
  • 项目类别:
A High-Resolution Enhancer Atlas of the Developing Forebrain
前脑发育的高分辨率增强器图谱
  • 批准号:
    7694253
  • 财政年份:
    2008
  • 资助金额:
    $ 135.88万
  • 项目类别:

相似海外基金

Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
  • 批准号:
    23K14138
  • 财政年份:
    2023
  • 资助金额:
    $ 135.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
  • 批准号:
    10396678
  • 财政年份:
    2021
  • 资助金额:
    $ 135.88万
  • 项目类别:
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
  • 批准号:
    10361903
  • 财政年份:
    2021
  • 资助金额:
    $ 135.88万
  • 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10248476
  • 财政年份:
    2019
  • 资助金额:
    $ 135.88万
  • 项目类别:
Shining a light on dense granules- biochemical, genetic and cell biological investigation of an essential but understudied compartment in malarial -
揭示致密颗粒——对疟疾中一个重要但尚未充分研究的隔室进行生化、遗传和细胞生物学研究——
  • 批准号:
    2243093
  • 财政年份:
    2019
  • 资助金额:
    $ 135.88万
  • 项目类别:
    Studentship
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10687856
  • 财政年份:
    2019
  • 资助金额:
    $ 135.88万
  • 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10005386
  • 财政年份:
    2019
  • 资助金额:
    $ 135.88万
  • 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
  • 批准号:
    10480082
  • 财政年份:
    2019
  • 资助金额:
    $ 135.88万
  • 项目类别:
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
  • 批准号:
    2314361
  • 财政年份:
    2018
  • 资助金额:
    $ 135.88万
  • 项目类别:
    Studentship
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
  • 批准号:
    BB/S506837/1
  • 财政年份:
    2018
  • 资助金额:
    $ 135.88万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了