Structure and mechanism of CpG specific DNA glycosylases

CpG特异性DNA糖基化酶的结构和机制

基本信息

  • 批准号:
    7931177
  • 负责人:
  • 金额:
    $ 18.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The integrity of the genetic information encoded by DNA is essential to all organisms, yet the reactive bases of DNA are continuously subjected to chemical modification from endogenous and exogenous sources. To counteract this inevitable damage, the cellular machinery includes DNA repair systems. Damaged bases in DNA are repaired via base excision repair (BER), initiated by a damage-specific DNA glycosylase. These enzymes find lesions within the vast genomic DNA, and hydrolyze a generally stable bond to release the damaged base, producing apurinic/apyrimidinic (AP) DNA. DNA glycosylases typically bind the cytotoxic AP DNA product tightly until displaced by an AP endonuclease to continue BER. Although some enzymes recognize a single lesion; e.g., uracil DNA glycosylase is exquisitely specific for uracil, others recognize multiple lesions and/or mismatched bases. Two human enzymes recognize G/T mispairs, and other mutagenic lesions, specifically at CpG sites; methyl-binding domain IV (MBD4) and thymine DNA glycosylase (TDG). The long-term goal of this research is to understand how these enzymes recognize complex and multiple forms of damage and yet exclude normal base pairs, how they catalyze the hydrolysis of a generally stable bond, and how the AP DNA product is transferred from the DNA glycosylase to the AP endonuclease. The focus of this proposal is to determine how TDG obtains its specificity for G/T mispairs and other lesions, and its specificity against normal GC pairs, and how human AP endonuclease (APE1) stimulates the release of AP DNA from TDG. Towards this end, we will employ a multidisciplinary approach including structural, biophysical, and biochemical methods. The specific aims are to (i) determine the NMR structure of the TDG catalytic domain (TDGc), (ii) characterize the TDG reaction mechanism using transient and steady-state kinetics, and equilibrium binding experiments, (iii) discover the chemical basis of the recognition of multiple substrates and the rejection of GC by TDG, (iv) elucidate the mechanism of AP DNA transfer between TDG and APE1, and (v) determine the NMR structure of a binary TDGc-DNA substrate analog complex to reveal the structural basis of TDG specificity. Given the mutagenic and cytotoxic effects of damage occurring at CpG sites in human genomic DNA, the proposed structural and mechanistic studies of TDG may have significant implications for ageing, and diseases including cancer.
描述(由申请人提供):DNA编码的遗传信息的完整性对所有生物体都是必不可少的,但DNA的反应性碱基不断受到内源性和外源性来源的化学修饰。为了抵消这种不可避免的损害,细胞机制包括DNA修复系统。DNA中受损的碱基通过碱基切除修复(BER)修复,由损伤特异性DNA糖基化酶启动。这些酶在大量基因组DNA中发现损伤,并水解通常稳定的键以释放受损的碱基,产生脱嘌呤/脱嘧啶(AP)DNA。DNA糖基化酶通常与细胞毒性AP DNA产物紧密结合,直到被AP核酸内切酶取代以继续BER。虽然有些酶识别单个病变;例如,尿嘧啶DNA糖基化酶对尿嘧啶具有精确的特异性,其他糖基化酶识别多个损伤和/或错配碱基。两种人类酶识别G/T错配和其他诱变损伤,特别是在CpG位点;甲基结合结构域IV(MBD 4)和胸腺嘧啶DNA糖基化酶(TDG)。这项研究的长期目标是了解这些酶如何识别复杂和多种形式的损伤,但排除正常的碱基对,它们如何催化通常稳定的键的水解,以及AP DNA产物如何从DNA糖基化酶转移到AP核酸内切酶。该建议的重点是确定TDG如何获得其对G/T错配和其他病变的特异性,以及其对正常GC对的特异性,以及人AP核酸内切酶(APE 1)如何刺激AP DNA从TDG中释放。为此,我们将采用多学科的方法,包括结构,生物物理和生物化学方法。具体目标是(i)确定TDG催化结构域(TDGc)的NMR结构,(ii)使用瞬态和稳态动力学以及平衡结合实验来表征TDG反应机理,(iii)发现TDG识别多个底物和排斥GC的化学基础,(iv)阐明TDG和APE 1之间的AP DNA转移机制,和(v)测定二元TDGc-DNA底物类似物复合物的NMR结构以揭示TDG特异性的结构基础。鉴于人类基因组DNA中CpG位点损伤的致突变和细胞毒性效应,TDG的拟议结构和机制研究可能对衰老和包括癌症在内的疾病具有重要意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex C Drohat其他文献

Alex C Drohat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex C Drohat', 18)}}的其他基金

Differential Scanning Calorimeter
差示扫描量热仪
  • 批准号:
    10387603
  • 财政年份:
    2020
  • 资助金额:
    $ 18.3万
  • 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
  • 批准号:
    10390444
  • 财政年份:
    2020
  • 资助金额:
    $ 18.3万
  • 项目类别:
Nucleic Acid Purification System
核酸纯化系统
  • 批准号:
    10797451
  • 财政年份:
    2020
  • 资助金额:
    $ 18.3万
  • 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
  • 批准号:
    10605583
  • 财政年份:
    2020
  • 资助金额:
    $ 18.3万
  • 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
  • 批准号:
    10726878
  • 财政年份:
    2020
  • 资助金额:
    $ 18.3万
  • 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
  • 批准号:
    10606489
  • 财政年份:
    2020
  • 资助金额:
    $ 18.3万
  • 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
  • 批准号:
    7175459
  • 财政年份:
    2005
  • 资助金额:
    $ 18.3万
  • 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
  • 批准号:
    7146414
  • 财政年份:
    2005
  • 资助金额:
    $ 18.3万
  • 项目类别:
Structure and Mechanism of CpG specific DNA glycosylases
CpG 特异性 DNA 糖基化酶的结构和机制
  • 批准号:
    8535460
  • 财政年份:
    2005
  • 资助金额:
    $ 18.3万
  • 项目类别:
Structure and Mechanism of CpG specific DNA glycosylases
CpG 特异性 DNA 糖基化酶的结构和机制
  • 批准号:
    8536824
  • 财政年份:
    2005
  • 资助金额:
    $ 18.3万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了