Nucleic Acid Purification System
核酸纯化系统
基本信息
- 批准号:10797451
- 负责人:
- 金额:$ 11.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Aberrant DNA MethylationAgingAnimalsArchaeaBacteriaBase Excision RepairsBindingCytosineDNADNA MethylationDNA Repair EnzymesDNA glycosylaseDeaminationDiseaseEnsureEnzymesEpigenetic ProcessExcisionFaceGene ExpressionGenetic DiseasesGenomicsGoalsGuanineHealthHumanIn VitroLearningMalignant NeoplasmsMammalsMediatingMethylationModelingModificationMutationNaturePathway interactionsPlantsPoint MutationPolymerasePost-Translational Protein ProcessingProcessResearchSiteSpecificitySumoylation PathwaySystemTestingThymineUracilVertebratesbasedemethylationenzyme activityepigenetic regulationgenome integrityhuman DNAhuman diseaseinterestnovel therapeutic interventionnucleic acid purificationoxidationrecruitrepair enzymerepaired
项目摘要
An overarching goal of our research is to understand how the base excision repair (BER) pathway maintains
genomic integrity and mediates epigenetic regulation, and how deficiencies in BER impact human health. A
major focus is to discover how DNA glycosylases, which initiate BER, find and excise damaged or modified
forms of 5-methylcytosine (mC). The most abundant modified DNA base in nature, mC is critical for epigenetic
regulation in plants and animals and for restriction modification in archaea and bacteria. However, cytosine
methylation also poses a danger because mC deaminates to T, generating G/T mispairs and C to T mutations
that threaten genomic and epigenetic integrity and causes human diseases including cancer. Countering this
threat are three different types of glycosylases that excise T from G/T mispairs; TDG and MBD4 in mammals
and MIG in archaea and bacteria. While most glycosylases excise bases that are foreign to DNA (e.g., uracil)
these enzymes face the daunting task of removing thymine bases arising by mC deamination but not those in
the vast background of A:T pairs or in polymerase-generated G/T mispairs. Because glycosylase action on
undamaged DNA is mutagenic, the specificity of these G/T glycosylases is critical, yet it is poorly defined. The
current paradigm holds that specificity involves recognition of the mismatched guanine. We will rigorously test
this model and investigate other potential specificity factors, to define the mechanism of G/T glycosylase
specificity. Our studies will reveal features of TDG and MBD4 that may account for inefficient repair of mC
deamination, a potential cause of point mutations implicated in cancer and genetic disease. BER also functions
in epigenetic regulation by serving to “erase” mC through active DNA demethylation. An established pathway
in vertebrates involves oxidation of mC by a TET enzyme to give three oxy-mC products (hmC, fC, caC),
excision of fC or caC by TDG, and subsequent BER to yield unmodified C. Our studies will address major gaps
in the understanding of this essential pathway, by defining how TDG recognizes and removes fC and caC and
how it is recruited to sites of DNA demethylation. We are also interested in how post-translational modifications
regulate BER, and our current focus is on determining how TDG is regulated by SUMO modification. TDG is
sumoylated at a single site, and it has a SUMO-interacting motif (SIM) that binds SUMO domains, including an
intramolecular SUMO. While TDG is considered a model for understanding how sumoylation can regulate
enzyme activity, many fundamental questions remain. Our studies will reveal how sumoylation alters TDG
activity and how the SIM mediates these effects. We will also define mechanisms of SUMO conjugation and
deconjugation and learn how the SIM modulates these processes. An in vitro conjugation-deconjugation
system will be used to test the paradigm that sumoylation of TDG is required to regulate its product release
and ensure faithful completion of TDG-initiated BER. Results of these studies will inform how BER deficiencies
impact human health and could suggest new therapeutic approaches for treating diseases including cancer.
我们研究的一个主要目标是了解碱基切除修复(BER)途径如何维持
基因组完整性和调节表观遗传调控,以及BER缺陷如何影响人类健康。一个
主要的焦点是发现启动BER的DNA糖基酶是如何发现和切除受损或修饰的
5-甲基胞嘧啶(MC)的形式。MC是自然界中最丰富的修饰DNA碱基,对表观遗传学至关重要
植物和动物的管制以及古生菌和细菌的限制性修改。然而,胞嘧啶
甲基化也是一种危险,因为MC脱氨基为T,产生G/T错配和C到T突变
这威胁到基因组和表观遗传的完整性,并导致包括癌症在内的人类疾病。反击这一点
威胁是三种不同类型的糖基酶,它们从G/T错配中剔除T;哺乳动物中的TDG和MBD4
古生菌和细菌中的MIG。虽然大多数糖基酶去除了DNA外来的碱基(如尿嘧啶)
这些酶面临着一项艰巨的任务,即去除由MC脱氨而产生的胸腺嘧啶碱基,而不是那些
A:T配对或聚合酶产生的G/T错配的广泛背景。因为糖基酶作用于
未损伤的DNA是突变的,这些G/T糖基酶的特异性是关键的,但它的定义很差。这个
目前的范式认为,特异性涉及识别不匹配的鸟嘌呤。我们将严格测试
并研究其他潜在的特异性因子,以明确G/T糖基酶的作用机制
专一性。我们的研究将揭示TDG和MBD4的特征,这可能是MC修复效率低下的原因
去氨基作用,这是癌症和遗传病中涉及的点突变的潜在原因。BER也有功能
在表观遗传调控中,通过活跃的DNA去甲基化来“擦除”MC。一条既定的道路
在脊椎动物中涉及通过Tet酶氧化MC以产生三种氧基-MC产物(HMC,FC,CAC),
通过TDG切除FC或CAC,以及随后的误码率以产生未修改的C。我们的研究将解决主要差距
在理解这一基本途径时,通过定义TDG如何识别和移除FC和CAC以及
它是如何被招募到DNA去甲基化位点的。我们还感兴趣的是翻译后的修改如何
调节误码率,我们目前的重点是确定相扑修改如何调节TDG。TDG是
在单个位置相扑,它有一个相扑相互作用基序(SIM),结合相扑结构域,包括一个
分子内相扑。而TDG被认为是一个理解相扑如何调控的模型
关于酶的活性,许多基本问题仍然存在。我们的研究将揭示相扑是如何改变tdg的。
活动以及SIM卡如何调节这些影响。我们还将定义相扑共轭机制和
了解SIM卡是如何调节这些过程的。一种体外结合去共轭的方法
系统将被用来测试TDG需要相加来调节其产品释放的范式
并确保忠实地完成TDG发起的BER。这些研究的结果将告诉我们误码率的不足
影响人类健康,并可能为治疗包括癌症在内的疾病提供新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex C Drohat其他文献
Alex C Drohat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex C Drohat', 18)}}的其他基金
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10390444 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10605583 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10726878 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10606489 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
- 批准号:
7931177 - 财政年份:2009
- 资助金额:
$ 11.39万 - 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
- 批准号:
7175459 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
- 批准号:
7146414 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
Structure and Mechanism of CpG specific DNA glycosylases
CpG 特异性 DNA 糖基化酶的结构和机制
- 批准号:
8535460 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
Structure and Mechanism of CpG specific DNA glycosylases
CpG 特异性 DNA 糖基化酶的结构和机制
- 批准号:
8536824 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
相似海外基金
Pexophagy regulation in live animals and its role in aging and longevity
活体动物的 Pexophagy 调节及其在衰老和长寿中的作用
- 批准号:
10566172 - 财政年份:2022
- 资助金额:
$ 11.39万 - 项目类别:
Myocardial Infarct in Aging Animals and dATP Therapy
老龄动物心肌梗死和 dATP 治疗
- 批准号:
9565690 - 财政年份:2017
- 资助金额:
$ 11.39万 - 项目类别:
Analysis of the bone metabolism failure in the aging animals and establishment of the preventive maintenance plan based on the animal welfare
老龄动物骨代谢衰竭分析及基于动物福利的预防性维护计划制定
- 批准号:
16K15057 - 财政年份:2016
- 资助金额:
$ 11.39万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Deciphering early events of infection in yopung and aging animals using caenorhabditis elegans as a model host
使用秀丽隐杆线虫作为模型宿主破译yopung和衰老动物的早期感染事件
- 批准号:
374271-2009 - 财政年份:2011
- 资助金额:
$ 11.39万 - 项目类别:
Postgraduate Scholarships - Doctoral
Deciphering early events of infection in yopung and aging animals using caenorhabditis elegans as a model host
使用秀丽隐杆线虫作为模型宿主破译yopung和衰老动物的早期感染事件
- 批准号:
374271-2009 - 财政年份:2010
- 资助金额:
$ 11.39万 - 项目类别:
Postgraduate Scholarships - Doctoral
Deciphering early events of infection in yopung and aging animals using caenorhabditis elegans as a model host
使用秀丽隐杆线虫作为模型宿主破译yopung和衰老动物的早期感染事件
- 批准号:
374271-2009 - 财政年份:2009
- 资助金额:
$ 11.39万 - 项目类别:
Postgraduate Scholarships - Doctoral
Comparative evolutionary studies on the expmssion of dementia-related genes in aging nonhuman animals
老年非人类动物痴呆相关基因表达的比较进化研究
- 批准号:
14360188 - 财政年份:2002
- 资助金额:
$ 11.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Roles of oxidatively modified proteins in the brain of aging animals : Intervention by moderate regular exercise
氧化修饰蛋白质在衰老动物大脑中的作用:适度定期运动的干预
- 批准号:
12672126 - 财政年份:2000
- 资助金额:
$ 11.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
THE STUDY OF RISK ASSESSMENT FOR ENVIRONMENTAL POLLUTANTS USING IMMUNOLOGICAL PARAMETERS IN AGING ANIMALS WITH LUNG DISEASES.
使用患有肺病的老龄动物的免疫参数进行环境污染物风险评估的研究。
- 批准号:
10680524 - 财政年份:1998
- 资助金额:
$ 11.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear analysis of the hemodynamics in the artificial heart animals as the aging acceleration model
作为老化加速模型的人工心脏动物血流动力学的非线性分析
- 批准号:
06558118 - 财政年份:1994
- 资助金额:
$ 11.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)