Genome Plasticity during ES Cell Differentiation to Neural Lineages
ES 细胞分化为神经谱系期间的基因组可塑性
基本信息
- 批准号:7910975
- 负责人:
- 金额:$ 11.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBMP4BiochemicalCell CycleCell LineageCell divisionCellsCharacteristicsChromatinChromatin StructureChromosome StructuresChromosomesCommitDNA MethylationDNA PackagingDNA biosynthesisDown-RegulationES Cell LineEctodermElementsEmbryoEngineeringEpigenetic ProcessEventFoundationsFunctional RNAG9a histone methyltransferaseGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGoalsHeritabilityHistonesHot SpotKnock-outLinkMalignant NeoplasmsMapsMesodermMethylationModelingModificationMolecularMusNeuronsNuclearNucleosomesPhasePlayPositioning AttributeProbabilityProcessProteinsRegulatory ElementRelative (related person)Research PersonnelResolutionRoleStagingStem cellsStructureSystemTestingTimeTranscriptUp-RegulationWorkcell typedensityembryonic stem cellgene inductiongenome-widehistone modificationinsertion/deletion mutationinsightmorphogensnerve stem cellneural precursor cellnovelpleiotrophinprogramsrelating to nervous systemresearch studystemstem cell differentiationstem cell therapy
项目摘要
DESCRIPTION (provided by applicant): Our long-term goal is to understand the role of DNA replication in cellular epigenetic states. Chromatin is assembled at the replication fork and different types of chromatin are assembled at different times during S-phase. Moreover, many studies have correlated changes in replication timing to changes in gene expression in different cell lineages and in cancer but none have been able to address the intermediate states that accompany these changes. Mechanistic studies will require a system in which these changes can be elicited with sufficient synchrony and homogeneity as to permit biochemical and molecular analyses. We describe such a system in this proposal. We detect dynamic changes in replication timin within a single cell cycle and coincident with key cell fate changes during the differentiation of mouse ES cells to neural precursors. Early to late replication changes coincide with loss of pluripotence and irreversible down-regulation of ES-specific genes, while late to early changes coincide with commitment to neural lineages and up-regulation of neural specific genes. Since replication timing is regulated at the level of large chromosomal domains, our studies have the potential to open a novel chapter in gene regulation. Our working hypothesis is that changes in replication timing during differentiation reinforce the heritability of changes in chromatin structure across large chromosome domains that in turn modulate the responsiveness of genes during stem cell commitment. In Aim 1 we will perform genome-wide analyses of replication timing, transcription and chromatin states at key stages during differentiation to identify biologically significant relationships. We demonstrate that ES cells lacking the G9a histone methyltransferase replicate a subset of neural-induced genes earlier during S-phase, suggesting a link between histone methylation and replication. One of these genes, the Pleiotrophin (Ptn) gene resides within a 500 kb chromatin domain that switches as a unit from late to early replicating within the same cell cycle in which transcription is induced. Intriguingly, a wave of non-coding transcription begins throughput this chromatin domain 1-2 cell cycles prior to the replication switch, during a definitive ectoderm-like stage. We propose a model in which non-coding transcription elicits changes in histone modifications that accumulate until they trigger a switch in replication timing that in turn transmits the chromatin state to the entire domain, committing the domain to a responsive chromatin state. Aim 2 addresses the role of transcription in remodeling domain-wide chromatin structure while Aim 3 addresses the role of the G9a histone methyltransferase in regulating replication timing and chromatin structure at the level of large chromatin domains. Lay Relevance: All cells contain the same genetic information (DNA) but package it with proteins into "chromatin" in characteristic ways that define each cell type. Chromatin is dismantled and re-assembled during each cell division, and we have discovered that the sequence in which segments of DNA are packaged into chromatin changes as stem cells turn into different cell types. Understanding how to manipulate this packaging process may help us engineer different cell types, a central goal in stem cell therapy.
描述(由申请人提供):我们的长期目标是了解 DNA 复制在细胞表观遗传状态中的作用。染色质在复制叉处组装,不同类型的染色质在 S 期的不同时间组装。此外,许多研究将复制时间的变化与不同细胞谱系和癌症中基因表达的变化联系起来,但没有一个能够解决伴随这些变化的中间状态。机理研究需要一个能够以足够的同步性和同质性引发这些变化的系统,以便进行生化和分子分析。我们在本提案中描述了这样一个系统。我们检测到单个细胞周期内复制时间的动态变化,并且与小鼠 ES 细胞分化为神经前体期间的关键细胞命运变化相一致。早期到晚期的复制变化与多能性的丧失和 ES 特异性基因的不可逆下调一致,而晚期到早期的变化与神经谱系的形成和神经特异性基因的上调一致。由于复制时间是在大染色体域水平上调节的,因此我们的研究有可能开启基因调控的新篇章。我们的工作假设是,分化过程中复制时间的变化增强了大染色体区域染色质结构变化的遗传性,进而调节干细胞定型期间基因的反应性。在目标 1 中,我们将对分化过程中关键阶段的复制时间、转录和染色质状态进行全基因组分析,以确定具有生物学意义的关系。我们证明,缺乏 G9a 组蛋白甲基转移酶的 ES 细胞在 S 期早期复制了神经诱导基因的子集,这表明组蛋白甲基化和复制之间存在联系。其中一个基因,多效蛋白 (Ptn) 基因位于 500 kb 的染色质结构域内,该结构域作为一个单位在诱导转录的同一细胞周期内从复制晚期切换到早期复制。有趣的是,在复制转换之前,在确定的外胚层样阶段,一波非编码转录开始穿过该染色质结构域 1-2 个细胞周期。我们提出了一个模型,其中非编码转录引起组蛋白修饰的变化,这些变化会累积,直到触发复制时间的转换,进而将染色质状态传递到整个域,使该域进入响应性染色质状态。目标 2 解决转录在重塑全域染色质结构中的作用,而目标 3 解决 G9a 组蛋白甲基转移酶在大染色质域水平上调节复制计时和染色质结构中的作用。相关性:所有细胞都含有相同的遗传信息 (DNA),但以定义每种细胞类型的特有方式将其与蛋白质一起包装到“染色质”中。染色质在每次细胞分裂过程中都会被分解和重新组装,我们发现,随着干细胞转变为不同的细胞类型,DNA片段包装到染色质中的顺序也会发生变化。了解如何操纵这种包装过程可能有助于我们设计不同的细胞类型,这是干细胞治疗的核心目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David M Gilbert其他文献
Intranuclear changes in cancer cells
- DOI:
10.1186/gb-2007-8-8-312 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:9.400
- 作者:
David M Gilbert;Daniele Zink - 通讯作者:
Daniele Zink
Roles of Rif1 in regulation of DNA replication, transcription and DNA repair
Rif1 在 DNA 复制、转录和 DNA 修复调节中的作用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Satoshi Yamazaki;Jiao Sima;Yumeka Matsushima;Kenji Moriyama;Naoko Yoshizawa;Sara Buonomo;David M Gilbert;Hisao Masai - 通讯作者:
Hisao Masai
David M Gilbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David M Gilbert', 18)}}的其他基金
Oncogenic pathway-induced fragile sites: a new paradigm for understanding genome instability in cancer
致癌途径诱导的脆弱位点:了解癌症基因组不稳定性的新范例
- 批准号:
10589809 - 财政年份:2022
- 资助金额:
$ 11.03万 - 项目类别:
Mapping the 3D architecture of native human replisomes
绘制天然人类复制体的 3D 架构
- 批准号:
10461210 - 财政年份:2019
- 资助金额:
$ 11.03万 - 项目类别:
Mapping the 3D architecture of native human replisomes
绘制天然人类复制体的 3D 架构
- 批准号:
10400294 - 财政年份:2019
- 资助金额:
$ 11.03万 - 项目类别:
Replication domain organization during hESC differentiation
hESC 分化过程中的复制域组织
- 批准号:
8641824 - 财政年份:2014
- 资助金额:
$ 11.03万 - 项目类别:
Replication Profiling as a Diagnostic Tool in B-cell Acute Lymphoblastic Leukemia
复制分析作为 B 细胞急性淋巴细胞白血病的诊断工具
- 批准号:
8594233 - 财政年份:2012
- 资助金额:
$ 11.03万 - 项目类别:
Replication Profiling as a Diagnostic Tool in B-cell Acute Lymphoblastic Leukemia
复制分析作为 B 细胞急性淋巴细胞白血病的诊断工具
- 批准号:
8445645 - 财政年份:2012
- 资助金额:
$ 11.03万 - 项目类别:
Replication Domain Organization during hESC Differentiation
hESC 分化期间的复制域组织
- 批准号:
8382720 - 财政年份:2012
- 资助金额:
$ 11.03万 - 项目类别:
cis-Acting Elements Regulating Developmental Control of Replication Timing
调节复制时间发育控制的顺式作用元件
- 批准号:
8238959 - 财政年份:2007
- 资助金额:
$ 11.03万 - 项目类别:
cis-Acting Elements Regulating Developmental Control of Replication Timing
调节复制时间发育控制的顺式作用元件
- 批准号:
9296144 - 财政年份:2007
- 资助金额:
$ 11.03万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 11.03万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 11.03万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 11.03万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 11.03万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 11.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 11.03万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 11.03万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 11.03万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 11.03万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 11.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists