THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
基本信息
- 批准号:7928259
- 负责人:
- 金额:$ 28.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAlzheimer&aposs DiseaseBiological AssayBiological MarkersBrainCollectionCoupledDNADataData SetDevelopmentDrug CostsFreezingGene ExpressionGene Expression ProfileGeneticGenetic RiskGenomeGenotypeGrantHourHumanHuman GenomeLaboratoriesLate Onset Alzheimer DiseaseLiquid ChromatographyMapsMass Spectrum AnalysisMeasurementMolecularMolecular GeneticsNeurodegenerative DisordersNoisePacific NorthwestPathogenesisProcessProteinsProteomeProteomicsRegulationRiskRunningSample SizeSamplingSingle Nucleotide PolymorphismSubgroupSystemTimeTranscriptVariantWorkagedimprovedinstrumentmolecular markernovelphenomepre-clinicalprotein expressionsuccesstranscriptomics
项目摘要
Description (provided by applicant): Our Human Brainome project seeks to define the genome-transriptome-proteome- phenome interactions in the cortexes of normally aged human brains and brains affected by neurodegenerative disease. We hypothesize that the current accepted approach for discovering novel genetic risk loci by looking at a single layer of information (genotypes) is lacking power and taking a more systems-wide approach might increase the success of finding novel targets. We intend upon comparing our genotype information (~ 1.8 million single nucleotide polymorphisms) and our expression information (~ 46,000 transcripts) with a novel proteomics dataset generated by running Liquid Chromatography coupled online with high mass accuracy Mass Spectrometry (LC- MS, providing quantification of ~2000-3000 proteins). We will look at both single correlative cis and trans relationships (i.e. DNA change affects downstream regulation of one transcript or protein), as well as perform analyses to understand the networks of relationships occurring both at the transcriptome and proteome level. We are well situated to perform this work. First, we have an extensive collection of frozen human brain samples (n~1500, ~60% late onset Alzheimer's disease samples) for which there is genotype and expression data available. Large sample sizes are needed to obtain sufficient power to accurately assess the human genome as well as overcome some of the noise and other issues inherent to transcriptomics and proteomics sample analysis. These existing genotype and gene expression datasets are essential to success in this grant. Second, to accomplish the proteome analyses we will utilize the accurate mass and time (AMT) tag approach developed at the Pacific Northwest National Laboratories to avoid the sensitivity constraints of conventional approaches and improve the throughput of measurements providing broad proteome coverage. While having the same coverage of the proteome, the AMT tag approach typically reduces by 1-2 orders (e.g. 1 hour vs normally 24 hours) of magnitude the instrument time per sample analysis. Thus, the AMT tag approach is the only reasonable option to provide the sensitivity and measurement throughput essential to this project. Finally, we expect to achieve an additional 10-fold increase in sensitivity using our novel de-noising algorithm that will allow for a more accurate assessment of the complete proteome of the human brain cortex. By developing a more global view of the processes involved in human brain expression we will be able to relate new genetic findings to their downstream neuro-pathobiological relevance. This should aid in the development of novel genetic and molecular biomarkers of neurodegenerative disease. Identifying biomarkers that could further classify pre-clinical subgroups and identify sub-classes of rapid converters would help to significantly reduce the cost of drug trials. These biomarkers will have the added benefit that they are not only molecular, but in addition have mapped genotype profiles, which should be easier to assay than a molecular marker. In this project we seek to define the effects of DNA variation on human cortical expression with an emphasis on the DNA variation that is impinging on proteome expression changes relevant to the pathogenesis of Alzheimer's disease. If we achieve our aims we will know specifically which variant or group of variants are changing protein expression levels. This information will help us to define the downstream significance of DNA risk variation in Alzheimer's disease, which might aid in the discovery of novel biomarkers and therapies for this devastating illness.
描述(由申请人提供):我们的人脑组项目旨在定义正常老年人脑和受神经退行性疾病影响的大脑皮质中的基因组-transriptome-蛋白质组-表型组相互作用。我们假设,目前公认的通过查看单层信息(基因型)来发现新的遗传风险位点的方法缺乏力量,采取更系统的方法可能会增加发现新靶点的成功率。我们打算将我们的基因型信息(约180万个单核苷酸多态性)和我们的表达信息(约46,000个转录本)与通过运行液相色谱与高质量准确度质谱联用(LC-MS,提供约2000-3000种蛋白质的定量)生成的新型蛋白质组学数据集进行比较。我们将研究单一相关的顺式和反式关系(即DNA变化影响一种转录本或蛋白质的下游调控),并进行分析以了解在转录组和蛋白质组水平上发生的关系网络。我们完全有能力完成这项工作。首先,我们广泛收集了冷冻人脑样品(n~1500,~60%迟发性阿尔茨海默病样品),其中有可用的基因型和表达数据。需要大样本量来获得足够的功效以准确评估人类基因组,并克服转录组学和蛋白质组学样本分析固有的一些噪声和其他问题。这些现有的基因型和基因表达数据集是成功的关键。其次,为了完成蛋白质组分析,我们将利用太平洋西北国家实验室开发的精确质量和时间(AMT)标签方法,以避免传统方法的灵敏度限制,并提高测量的通量,提供广泛的蛋白质组覆盖。虽然具有相同的蛋白质组覆盖率,但AMT标签方法通常将每次样品分析的仪器时间减少1-2个数量级(例如1小时相对于通常的24小时)。因此,AMT标签方法是提供该项目所必需的灵敏度和测量吞吐量的唯一合理选择。最后,我们希望使用我们的新型去噪算法实现额外10倍的灵敏度增加,这将允许更准确地评估人类大脑皮层的完整蛋白质组。通过对人类大脑表达过程的更全面的认识,我们将能够将新的遗传发现与其下游神经病理生物学相关性联系起来。这应该有助于开发神经退行性疾病的新型遗传和分子生物标志物。确定可以进一步分类临床前亚组并确定快速转换者的亚类的生物标志物将有助于显着降低药物试验的成本。这些生物标志物将具有额外的益处,即它们不仅是分子的,而且还具有绘制的基因型谱,这应该比分子标志物更容易测定。在这个项目中,我们试图定义DNA变异对人类大脑皮层表达的影响,重点是DNA变异对阿尔茨海默病发病机制相关的蛋白质组表达变化的影响。如果我们实现了我们的目标,我们将具体知道哪个变体或哪组变体正在改变蛋白质表达水平。这些信息将帮助我们确定阿尔茨海默病中DNA风险变异的下游意义,这可能有助于发现这种毁灭性疾病的新生物标志物和疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda J Myers其他文献
Amanda J Myers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda J Myers', 18)}}的其他基金
THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
- 批准号:
10651684 - 财政年份:2020
- 资助金额:
$ 28.83万 - 项目类别:
THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
- 批准号:
10450115 - 财政年份:2020
- 资助金额:
$ 28.83万 - 项目类别:
THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
- 批准号:
10033207 - 财政年份:2020
- 资助金额:
$ 28.83万 - 项目类别:
THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
- 批准号:
10256018 - 财政年份:2020
- 资助金额:
$ 28.83万 - 项目类别:
QUANTITATIVE PROTEOMICS OF ALZHEIMER'S DISEASE HUMAN BRAIN
阿尔茨海默病人脑的定量蛋白质组学
- 批准号:
8365476 - 财政年份:2011
- 资助金额:
$ 28.83万 - 项目类别:
QUANTITATIVE PROTEOMICS OF ALZHEIMER'S DISEASE HUMAN BRAIN
阿尔茨海默病人脑的定量蛋白质组学
- 批准号:
8170716 - 财政年份:2010
- 资助金额:
$ 28.83万 - 项目类别:
THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
- 批准号:
8313986 - 财政年份:2009
- 资助金额:
$ 28.83万 - 项目类别:
THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
- 批准号:
7727728 - 财政年份:2009
- 资助金额:
$ 28.83万 - 项目类别:
QUANTITATIVE PROTEOMICS OF ALZHEIMER'S DISEASE HUMAN BRAIN
阿尔茨海默病人脑的定量蛋白质组学
- 批准号:
7957022 - 财政年份:2009
- 资助金额:
$ 28.83万 - 项目类别:
THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
- 批准号:
8122171 - 财政年份:2009
- 资助金额:
$ 28.83万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 28.83万 - 项目类别:
Research Grant