THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
基本信息
- 批准号:10256018
- 负责人:
- 金额:$ 77.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAlzheimer&aposs DiseaseAlzheimer&aposs Disease PathwayAlzheimer&aposs disease pathologyAmyloid beta-ProteinAntisense RNAArchivesBindingBiologyBrainCell Culture TechniquesCodeDNADataData CollectionDatabasesDiseaseGenomicsGenotypeGoalsHumanInstitutesInternationalInvestigationLaboratoriesLate EffectsLate Onset Alzheimer DiseaseLengthMapsMeasuresOligonucleotidesOutcomeOutputPathogenicityPathologicPathway interactionsPeptidesProceduresProcessProteinsProteomicsQuantitative Trait LociRNARegulationReproducibilityResourcesRiskSamplingSeriesSiteSpecificityTechniquesTechnologyTestingTimeTissue BanksTranscriptTranslationsUntranslated RNAValidationVariantWorkbasebrain tissuecase controldifferential expressionexperimental studygenome wide association studygenomic variationinnovationinterestknock-downneurogenomicsnoveloverexpressionrisk variantscaffoldsingle moleculesingle molecule real time sequencingtau Proteinstranscriptome sequencingtranscriptomicsweb site
项目摘要
PROJECT SUMMARY
Previously, we have taken an innovative approach (The Human Brainome; [1-6]) to mapping risk loci for
late onset Alzheimer's disease (LOAD). Rather than looking at a single layer of information as in most genome-
wide association (GWAS) studies, we have mapped genomic variation in the context of downstream
transcriptomic and proteomic expression. This allows for mapping both the crucial variation involved in LOAD,
as well as the downstream effects and their directions. Additionally, it allows for building networks of multiple
players crucial for disease processes.
One shortcoming of the current work is that we have mapped DNA-expression relationships that are subtly
changed in Alzheimer's, but we have yet to fully understand why those DNA-expression relationships are
altered. We know that expression is altered by specific alleles, but there must be added regulation given our
mapped outputs. One target that can alter pathways are natural antisense transcripts (NATs), which can bind
to oligonucleotide products and alter their expression and degradation. In our application, we propose to use
long read sequencing technology (SMRT; Single Molecule, Real-Time) and fully profile RNA from our human
brain bank samples. We will examine where these outputs are located and perform preliminary work to
determine if any of these new hits can act on our existing results.
We propose to follow these targets through 3 Aims. Aim 1 will involve following hits from public databases.
Aim 2 will involve collecting additional RNA profiling data. Finally, Aim 3 will seek to validate and order all novel
findings from Aims 1 and 2. It is important to use technologies appropriate to our hypothesis for the new data
collection. The majority of non-coding RNA belongs to the class of transcripts called long non-coding RNA
(lncRNA), which can span from 1000-10,000 bp [7]. Typical short-read RNA sequencing (SRS) technologies
are based on the capture of short sequences of ~150 bp, and therefore, SRS has difficulty in capture and
alignment of longer products. We are working with Robert Sebra at the Icahn Institute for Genomics and
Multicale Biology, who is an expert in SMRT sequencing [8]. This technology offers longer read lengths and will
be unique-in-field, since most human RNA profiling involves SRS.
By the completion of these Aims, we will have 1. A map of novel long read sequencing in human brain
tissues, which will be a significant add-to-field, given most technologies used to date are focused on short read
sequencing, and there is limited profiling in pathologically defined human brain tissues, 2. An understanding of
how these novel hits are affecting both the direct sense transcript of interest as well as the known LOAD
pathologies, 3. Multi-level mapping of rigor and reproducibility of targets through the use of multiple capture
techniques and 4. Validation of the effect of hits on the known LOAD pathogenic targets by measuring both
expression and protein levels in cell culture.
项目总结
以前,我们采取了一种创新的方法(人脑基因组;[1-6])来绘制风险基因座图
迟发性阿尔茨海默病(LOAD)。而不是像大多数基因组那样只看一层信息-
广泛关联(GWAS)研究,我们已经绘制了下游背景下的基因组变异图
转录和蛋白质组表达。这允许映射在负载中涉及的关键变化,
以及下游的影响和方向。此外,它还允许构建多个
在疾病过程中起关键作用的球员。
当前工作的一个缺点是我们已经绘制了微妙的DNA-表达关系图
在阿尔茨海默氏症中发生了变化,但我们还没有完全理解为什么这些DNA-表达关系
被更改了。我们知道表达是由特定的等位基因改变的,但考虑到我们的
映射的输出。可以改变途径的一个靶点是天然的反义转录本(NAT),它可以结合
寡核苷酸产物并改变其表达和降解。在我们的应用程序中,我们建议使用
长读测序技术(SMRT;单分子,实时)和完整的人类RNA图谱
脑库样本。我们将检查这些输出的位置,并执行初步工作,以
确定这些新的点击量中是否有任何一个可以在我们现有的结果上发挥作用。
我们建议遵循这些目标实现三个目标。目标1将涉及公共数据库中的以下点击量。
目标2将涉及收集额外的RNA图谱数据。最后,《目标3》将对所有小说进行验证和排序
来自目标1和目标2的发现。对于新数据,使用适合我们假设的技术是很重要的
收集。大多数非编码RNA属于被称为长非编码RNA的转录本类别
(LncRNA),其跨度可从1000-10000个碱基对[7]。典型的短读RNA测序(SRS)技术
是基于捕获~150个碱基的短序列,因此,SRS很难捕获和
较长产品的对准。我们正在与伊坎基因组研究所的罗伯特·塞布拉合作
他是SMRT测序方面的专家[8]。这项技术提供了更长的读取长度和
在现场是独一无二的,因为大多数人类RNA图谱涉及SRS。
通过这些目标的完成,我们将有1.人脑中的小说长阅读测序图
纸巾,这将是一个重要的补充领域,因为迄今为止使用的大多数技术都集中在短读上
测序,在病理定义的人脑组织中有有限的侧写,2.对
这些小说是如何影响直接意义上的感兴趣的文本以及已知的负载的
病理学,3.通过使用多次捕获对目标的严密性和重复性进行多层次映射
技术和4.通过测量两种方法验证HITS对已知负载致病目标的影响
在细胞培养中的表达和蛋白质水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda J Myers其他文献
Amanda J Myers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda J Myers', 18)}}的其他基金
THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
- 批准号:
10651684 - 财政年份:2020
- 资助金额:
$ 77.13万 - 项目类别:
THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
- 批准号:
10450115 - 财政年份:2020
- 资助金额:
$ 77.13万 - 项目类别:
THE HUMAN BRAINOME III: EQTL REGULATION BY NATURAL ANTISENSE RNA IN ALZHEIMER S DISEASE
人类大脑 III:天然反义 RNA 对阿尔茨海默病的 EQTL 调节
- 批准号:
10033207 - 财政年份:2020
- 资助金额:
$ 77.13万 - 项目类别:
QUANTITATIVE PROTEOMICS OF ALZHEIMER'S DISEASE HUMAN BRAIN
阿尔茨海默病人脑的定量蛋白质组学
- 批准号:
8365476 - 财政年份:2011
- 资助金额:
$ 77.13万 - 项目类别:
QUANTITATIVE PROTEOMICS OF ALZHEIMER'S DISEASE HUMAN BRAIN
阿尔茨海默病人脑的定量蛋白质组学
- 批准号:
8170716 - 财政年份:2010
- 资助金额:
$ 77.13万 - 项目类别:
THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
- 批准号:
8313986 - 财政年份:2009
- 资助金额:
$ 77.13万 - 项目类别:
THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
- 批准号:
7727728 - 财政年份:2009
- 资助金额:
$ 77.13万 - 项目类别:
QUANTITATIVE PROTEOMICS OF ALZHEIMER'S DISEASE HUMAN BRAIN
阿尔茨海默病人脑的定量蛋白质组学
- 批准号:
7957022 - 财政年份:2009
- 资助金额:
$ 77.13万 - 项目类别:
THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
- 批准号:
7928259 - 财政年份:2009
- 资助金额:
$ 77.13万 - 项目类别:
THE HUMAN BRAINOME:genome, transcriptome and proteome interaction in human cortex
人类大脑组:人类皮质中基因组、转录组和蛋白质组的相互作用
- 批准号:
8122171 - 财政年份:2009
- 资助金额:
$ 77.13万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 77.13万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 77.13万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 77.13万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 77.13万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 77.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 77.13万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 77.13万 - 项目类别: