Nanotechnologies for Determining Gene Expression Patterns from Single Cells

用于确定单细胞基因表达模式的纳米技术

基本信息

  • 批准号:
    7948880
  • 负责人:
  • 金额:
    $ 33.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-30 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Project Summary All existing global gene expression assay techniques require relatively large quantities of analyte; in order to use them with the minute amount of mRNA present in a few or a single cell, enzymatic amplification is required [5]. This process is time consuming, technically difficult, and expensive. More importantly, the amplification process itself biases the sample in a way that prohibits truly quantitative analysis [6]. This, combined with specific limitations of microarrays and DNA sequencing, results in no straightforward method to study transcription in single cells. To solve this problem we aim to directly identify individual gene transcript molecules (in the form of cDNA) via atomic force microscopy. The Specific Aims of this Application are to combine the building blocks of hardware, software and chemistry that we have developed into an integrated, functional system. The improvement we are proposing will significantly impact medicine by reducing time, cost and technical complexity of small sample transcriptional profiling; and will lower the bioinformatics burden by producing easier to interpret, better quality of information. PUBLIC HEALTH RELEVANCE: Project Narrative The long term goal of our research is to dissect, understand, and control the biology of single cells in complex tissues, such as brain, or in malignant tumors. Furthering this body of work requires that we address an unsolved problem in single cell molecular analysis: the lack of a method to routinely, reliably and inexpensively determine global gene transcriptional activity. The nanotechnologies we are developing will significantly impact medicine by reducing time, cost and technical complexity of small sample transcriptional profiling; and will lower the bioinformatics burden by producing easier to interpret, better quality of information.
描述(由申请人提供): 项目概要 所有现有的全局基因表达测定技术都需要相对大量的分析物;为了将它们与少数或单个细胞中存在的微量 mRNA 一起使用,需要进行酶促扩增 [5]。这个过程耗时、技术困难且昂贵。更重要的是,扩增过程本身会使样品产生偏差,从而无法进行真正的定量分析[6]。再加上微阵列和 DNA 测序的特定局限性,导致没有直接的方法来研究单细胞转录。 为了解决这个问题,我们的目标是通过原子力显微镜直接识别单个基因转录分子(以 cDNA 的形式)。该应用程序的具体目标是将我们开发的硬件、软件和化学构建块组合成一个集成的功能系统。我们提出的改进将通过减少小样本转录分析的时间、成本和技术复杂性来显着影响医学;并将通过产生更容易解释、质量更高的信息来减轻生物信息学的负担。 公共卫生相关性: 项目叙述我们研究的长期目标是剖析、理解和控制复杂组织(例如大脑)或恶性肿瘤中单细胞的生物学。推进这项工作需要我们解决单细胞分子分析中一个未解决的问题:缺乏一种常规、可靠且廉价地确定全局基因转录活性的方法。我们正在开发的纳米技术将通过减少小样本转录分析的时间、成本和技术复杂性,对医学产生重大影响;并将通过产生更容易解释、质量更高的信息来减轻生物信息学的负担。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason C Reed其他文献

Jason C Reed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason C Reed', 18)}}的其他基金

A new diagnostic tool for rapid detection and characterization of REPEAT SEQUENCES in inherited diseases
一种新的诊断工具,用于快速检测和表征遗传性疾病中的重复序列
  • 批准号:
    10682387
  • 财政年份:
    2022
  • 资助金额:
    $ 33.88万
  • 项目类别:
A new diagnostic tool for rapid detection and characterization of REPEAT SEQUENCES in inherited diseases
一种新的诊断工具,用于快速检测和表征遗传性疾病中的重复序列
  • 批准号:
    10354657
  • 财政年份:
    2022
  • 资助金额:
    $ 33.88万
  • 项目类别:
(PQD5) Mass Profiling Melanoma Responses to Improve Therapy Choices and Prognosis
(PQD5) 大规模分析黑色素瘤反应以改善治疗选择和预后
  • 批准号:
    8687449
  • 财政年份:
    2014
  • 资助金额:
    $ 33.88万
  • 项目类别:
(PQD5) Mass Profiling Melanoma Responses to Improve Therapy Choices and Prognosis
(PQD5) 大规模分析黑色素瘤反应以改善治疗选择和预后
  • 批准号:
    9067822
  • 财政年份:
    2014
  • 资助金额:
    $ 33.88万
  • 项目类别:
(PQD5) Mass Profiling Melanoma Responses to Improve Therapy Choices and Prognosis
(PQD5) 大规模分析黑色素瘤反应以改善治疗选择和预后
  • 批准号:
    8851546
  • 财政年份:
    2014
  • 资助金额:
    $ 33.88万
  • 项目类别:
Nanotechnologies for Determining Gene Expression Patterns from Single Cells
用于确定单细胞基因表达模式的纳米技术
  • 批准号:
    8657227
  • 财政年份:
    2010
  • 资助金额:
    $ 33.88万
  • 项目类别:
Nanotechnologies for Determining Gene Expression Patterns from Single Cells
用于确定单细胞基因表达模式的纳米技术
  • 批准号:
    8539804
  • 财政年份:
    2010
  • 资助金额:
    $ 33.88万
  • 项目类别:
Nanotechnologies for Determining Gene Expression Patterns from Single Cells
用于确定单细胞基因表达模式的纳米技术
  • 批准号:
    8146147
  • 财政年份:
    2010
  • 资助金额:
    $ 33.88万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了