(PQD5) Mass Profiling Melanoma Responses to Improve Therapy Choices and Prognosis
(PQD5) 大规模分析黑色素瘤反应以改善治疗选择和预后
基本信息
- 批准号:8687449
- 负责人:
- 金额:$ 48.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArtsBRAF geneBenchmarkingBiologicalBiological AssayBiological MarkersBiomassBiopsyCancer DiagnosticsCell LineCell SeparationCellsCessation of lifeClinicalClinical TrialsClinical assessmentsCollaborationsCombined Modality TherapyComplexComprehensive Cancer CenterDetectionDrug CombinationsDrug ExposureDrug resistanceDrug-sensitiveEngineeringEpigenetic ProcessExposure toGenomicsGoalsGrowthHeterogeneityHourHumanImageImage AnalysisIn VitroIncidenceIncubatorsIndividualInterferometryKineticsLifeLinkMAP Kinase GeneMalignant NeoplasmsMeasuresMedicineMelanoma CellMetastatic MelanomaMethodsMolecularMolecular AnalysisMolecular ProfilingMolecular TargetMutationNRAS geneOutcomePathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPhasePlug-inProcessProtein KinaseProtein-Serine-Threonine KinasesRecurrenceRelapseReproducibilityResistanceSamplingSignal PathwaySignal TransductionSpeedStagingSuspension substanceSuspensionsTechnologyTestingTherapeuticTherapeutic AgentsTimeToxic effectTranslationsTreatment EfficacyTumor SubtypeValidationbasebiophysical techniquescancer cellcancer diagnosiscancer therapycancer typecell growthcell typecombinatorialcomputerized data processingcostdrug candidatedrug efficacyepigenomicsgenetic analysishigh throughput screeningimprovedinhibitor/antagonistinnovationmelanomaneoplastic cellnovelnovel strategiesoutcome forecastpreclinical studypublic health relevanceresistance mechanismresponsescreeningsuccesstherapy resistanttumor
项目摘要
PROJECT SUMMARY/ABSTRACT
This proposal addresses the Group D Provocative Question (PQD5): Since current methods to predict the
efficacy or toxicity of new drug candidates in humans are often inaccurate, can we develop new methods to
test potential therapeutic agents that yield better predictions of response?
We will address critical shortcomings in predicting therapeutic responses to anticipate tumor recurrence
and improve patient outcome, which is usually based on tumor heterogeneity. We will accomplish this goal
by developing and applying a novel single-cell response measuring technology, termed a High-Throughput
Screening Live Cell Interferometer (HTS-LCI), to quantify single-cell biomass changes temporally, before
and during drug exposure. With 10,000s of time-dependent biomass profiles, we will rapidly characterize a
tumor's heterogeneous kinetic response to therapy in order to provide a quantitative statistical classifier.
Our proposal is transformative with broad implications for all types of cancer, but here we focus on
metastatic melanoma (mainly stage III-IV) because 1) it is a common cancer with increasing incidence, 2) is
often rapidly fatal, and 3) much is known about targeted therapy and resistance. Specifically, MAPK
pathway-activating BRAF serine/threonine kinase mutations are present in ~50% of melanomas.
Importantly, well-characterized BRAF-inhibitor (BRAFi) sensitive and resistant cell lines and fresh patient
melanoma samples are readily available for proof-of-principle preclinical studies.
Approaches in personalized medicine rely on static biomarker, genomic, and epigenetic parameters to
refine therapy choice and predict prognosis, but they all fail to incorporate therapeutic response, which is a
critical omission. Validated, individualized tumor cell response profiling could have enormous impact on
therapeutic efficacy, rapid cancer diagnosis, prognosis, and prediction of tumor recurrence. To reach this
goal we propose a new approach with three innovative components that include 1) engineering the HTS-
LCI to quantify tumor cell biomass changes in response therapeutic agents, in real time; 2) using paired
BRAFi sensitive and resistant patient-derived metastatic melanoma cell lines that have been extensively
characterized for genomic, epigenomic, and expression profiling by our collaborators; and 3) utilizing our
immediate access to de-identified patient samples through collaboration with Jonsson Comprehensive
Cancer Center clinicians and their ongoing early phase clinical trials. The Specific Aims of our proposal are:
Aim 1: To generate a BRAFi sensitive and resistant paired melanoma cell line statistical classifier.
Aim 2: To engineer the HTS-LCI for multi-drug growth rate profiling in a 36-well plate format.
Aim 3: To evaluate the HTS-LCI for rapid response detection of BRAFi sensitive and resistant lines.
Aim 4: To apply the HTS-LCI platform for biomass profiling of fresh melanoma patient samples.
项目总结/摘要
该提案解决了D组挑衅性问题(PQD 5):由于目前预测
候选新药在人体中的疗效或毒性往往是不准确的,我们能否开发新的方法,
测试潜在的治疗药物,以更好地预测反应?
我们将讨论在预测治疗反应以预测肿瘤复发方面的关键缺陷
并改善患者的预后,这通常是基于肿瘤的异质性。我们将实现这一目标
通过开发和应用一种新的单细胞反应测量技术,称为高分辨率
筛选活细胞干涉仪(HTS-LCI),以量化单细胞生物量的时间变化,
和药物暴露期间。通过10,000秒的时间依赖性生物量曲线,我们将快速表征
肿瘤对治疗的异质动力学响应,以便提供定量统计分类器。
我们的建议是变革性的,对所有类型的癌症都有广泛的影响,但在这里,我们的重点是
转移性黑色素瘤(主要是III-IV期),因为1)它是一种常见的癌症,发病率不断增加,2)
通常迅速致命,以及3)对靶向治疗和耐药性了解很多。具体来说,MAPK
通路激活BRAF丝氨酸/苏氨酸激酶突变存在于约50%的黑素瘤中。
重要的是,充分表征的BRAF抑制剂(BRAFi)敏感性和抗性细胞系和新鲜患者
黑色素瘤样本可随时用于原理验证临床前研究。
个性化医疗的方法依赖于静态生物标志物、基因组和表观遗传参数,
完善治疗选择和预测预后,但它们都未能纳入治疗反应,这是一个
关键性遗漏经验证的个体化肿瘤细胞反应谱可能对
治疗效果、癌症快速诊断、预后和肿瘤复发的预测。达到这个
我们提出了一种新的方法,包括三个创新的组成部分,1)工程HTS-
LCI以真实的时间定量响应治疗剂的肿瘤细胞生物量变化; 2)使用配对的
BRAFi敏感性和耐药性患者来源的转移性黑素瘤细胞系已经被广泛研究,
由我们的合作者进行基因组、表观基因组和表达谱表征;以及3)利用我们的
通过与Jonsson Comprehensive合作,立即获取去识别化的患者样本
癌症中心的临床医生和他们正在进行的早期临床试验。我们建议的具体目标是:
目的1:产生BRAFi敏感和抗性配对黑素瘤细胞系统计分类器。
目的2:设计HTS-LCI,用于36孔板格式中的多药物生长速率分析。
目的3:评估用于BRAFi敏感和抗性品系的快速反应检测的HTS-LCI。
目的4:将HTS-LCI平台应用于新鲜黑素瘤患者样本的生物量分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason C Reed其他文献
Jason C Reed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason C Reed', 18)}}的其他基金
A new diagnostic tool for rapid detection and characterization of REPEAT SEQUENCES in inherited diseases
一种新的诊断工具,用于快速检测和表征遗传性疾病中的重复序列
- 批准号:
10682387 - 财政年份:2022
- 资助金额:
$ 48.15万 - 项目类别:
A new diagnostic tool for rapid detection and characterization of REPEAT SEQUENCES in inherited diseases
一种新的诊断工具,用于快速检测和表征遗传性疾病中的重复序列
- 批准号:
10354657 - 财政年份:2022
- 资助金额:
$ 48.15万 - 项目类别:
(PQD5) Mass Profiling Melanoma Responses to Improve Therapy Choices and Prognosis
(PQD5) 大规模分析黑色素瘤反应以改善治疗选择和预后
- 批准号:
9067822 - 财政年份:2014
- 资助金额:
$ 48.15万 - 项目类别:
(PQD5) Mass Profiling Melanoma Responses to Improve Therapy Choices and Prognosis
(PQD5) 大规模分析黑色素瘤反应以改善治疗选择和预后
- 批准号:
8851546 - 财政年份:2014
- 资助金额:
$ 48.15万 - 项目类别:
Nanotechnologies for Determining Gene Expression Patterns from Single Cells
用于确定单细胞基因表达模式的纳米技术
- 批准号:
8657227 - 财政年份:2010
- 资助金额:
$ 48.15万 - 项目类别:
Nanotechnologies for Determining Gene Expression Patterns from Single Cells
用于确定单细胞基因表达模式的纳米技术
- 批准号:
8539804 - 财政年份:2010
- 资助金额:
$ 48.15万 - 项目类别:
Nanotechnologies for Determining Gene Expression Patterns from Single Cells
用于确定单细胞基因表达模式的纳米技术
- 批准号:
8146147 - 财政年份:2010
- 资助金额:
$ 48.15万 - 项目类别:
Nanotechnologies for Determining Gene Expression Patterns from Single Cells
用于确定单细胞基因表达模式的纳米技术
- 批准号:
7948880 - 财政年份:2010
- 资助金额:
$ 48.15万 - 项目类别:
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
ARTS在邻苯二甲酸(2-乙基己基)酯诱导的小鼠睾丸间质细胞凋亡中的作用及机理研究
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:
促进肿瘤凋亡的融合蛋白CPP-TRAIL-ARTS C27的制备及机制研究
- 批准号:81372444
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
雄性锹甲的生殖对策抉择ARTs及其进化机制-基于行为与SSRs标记的整合研究
- 批准号:31201745
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ARTS: Broadening capacity for research on gall wasps in North America
ARTS:扩大北美瘿蜂研究能力
- 批准号:
2338008 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Continuing Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
- 批准号:
2349111 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Continuing Grant
Open Access Block Award 2024 - University of the Arts London
2024 年开放获取区块奖 - 伦敦艺术大学
- 批准号:
EP/Z532216/1 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Research Grant
Games, Heritage, Arts, & Sport: the economic, social, and cultural value of the European videogame ecosystem (GAMEHEARTS)
游戏、遗产、艺术、
- 批准号:
10104584 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
EU-Funded
Art and Policy in the Global Contemporary: Examining the Role of the Arts in the Production of Public Policy
全球当代的艺术与政策:审视艺术在公共政策制定中的作用
- 批准号:
EP/Y036972/1 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Research Grant
Enhancing Faculty Well-being at Liberal Arts Colleges: Individual, Contextual, Institutional, and Cultural Factors
提高文理学院教师的福祉:个人、背景、制度和文化因素
- 批准号:
24K06445 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building Partnerships to Recruit Recent STEM Graduates into a Masters of Arts in Teaching Program
建立合作伙伴关系,招募应届 STEM 毕业生加入教学硕士项目
- 批准号:
2345165 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Standard Grant
地理総合における対話型鑑賞法を援用したArts-STEM型教科融合授業モデルの開発
利用综合地理学中的互动欣赏方法开发艺术-STEM型学科融合课堂模型
- 批准号:
24H02463 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Grant-in-Aid for Encouragement of Scientists
Arts4Us - Working Together to Scale up Place-Based Arts Initiatives that Support the Mental Health of Children and Young People
Arts4Us - 共同努力扩大支持儿童和青少年心理健康的地方艺术举措
- 批准号:
AH/Z505493/1 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Research Grant
ARTS: A corevision of the pinhole borers (Coleoptera: Curculionidae: Platypodinae) and symbiotic fungi (Raffaelea spp.) via multi-generational systematics training
艺术:通过多代系统学训练对针孔蛀虫(鞘翅目:象甲科:扁豆亚科)和共生真菌(拉斐菌属)进行共同观察
- 批准号:
2342481 - 财政年份:2024
- 资助金额:
$ 48.15万 - 项目类别:
Continuing Grant














{{item.name}}会员




