Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
基本信息
- 批准号:7985218
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2010-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAutomated AnnotationCaringClinicalClinical ResearchCodeCommunitiesComputerized Medical RecordConsensusCountryData SetDevelopmentDiseaseEvaluationGoalsGoldGuidelinesIndividualJudgmentKnowledgeLinguisticsManualsMedical RecordsMethodologyMethodsMetricNatural Language ProcessingPerformanceRelianceReportingResearchResearch InfrastructureResearch PersonnelSigns and SymptomsSystemTechnologyTerminologyTextTrainingTranslational ResearchTranslationsbasecostdesignflexibilityinnovationknowledge translationphrasespreventpublic health relevanceresearch clinical testingresearch studytool
项目摘要
DESCRIPTION (provided by applicant): Much of the clinical information required for accurate clinical research, active decision support, and broad-coverage surveillance is locked in text files in an electronic medical record (EMR). The only feasible way to leverage this information for translational science is to extract and encode the information using natural language processing (NLP). Over the last two decades, several research groups have developed NLP tools for clinical notes, but a major bottleneck preventing progress in clinical NLP is the lack of standard, annotated data sets for training and evaluating NLP applications. Without these standards, individual NLP applications abound without the ability to train different algorithms on standard annotations, share and integrate NLP modules, or compare performance. We propose to develop standards and infrastructure that can enable technology to extract scientific information from textual medical records, and we propose the research as a collaborative effort involving NLP experts across the U.S. To accomplish this goal, we will address three specific aims: Aim 1: Extend existing standards and develop new consensus standards for annotating clinical text in a way that is interoperable, extensible, and usable. Aim 2: Apply existing methods and tools, and develop new methods and tools where necessary for manually annotating a set of publicly available clinical texts in a way that is efficient and accurate. Aim 3: Develop a publicly available toolkit for automatically annotating clinical text and perform a shared evaluation to evaluate the toolkit, using evaluation metrics that are multidimensional and flexible.
PUBLIC HEALTH RELEVANCE: In this project, we will develop a publicly available corpus of annotated clinical texts for NLP research. We will experiment with methods for increasing the efficiency of annotation and will annotate de-identified reports of nine types for linguistic and clinical information. In addition, we will create an NLP toolkit that can be shared and will evaluate it against other NLP systems in a shared task evaluation with the community.
描述(由申请人提供):准确的临床研究、积极的决策支持和广泛的监督所需的大部分临床信息都被锁定在电子病历(EMR)的文本文件中。将这些信息用于翻译科学的唯一可行方法是使用自然语言处理(NLP)提取和编码信息。在过去的二十年里,几个研究小组已经开发了用于临床笔记的NLP工具,但阻碍临床NLP进步的主要瓶颈是缺乏用于训练和评估NLP应用程序的标准注释数据集。没有这些标准,单个NLP应用程序就无法在标准注释上训练不同的算法,共享和集成NLP模块,或者比较性能。我们建议开发标准和基础设施,使技术能够从文本医疗记录中提取科学信息,我们建议这项研究作为一项涉及美国各地NLP专家的合作努力,为了实现这一目标,我们将解决三个具体目标:目标1:扩展现有标准,并开发新的共识标准,以可互操作,可扩展和可用的方式注释临床文本。目标二:应用现有的方法和工具,并在必要时开发新的方法和工具,以高效和准确的方式手动注释一组公开的临床文本。目标3:开发一个公共可用的工具包,用于自动注释临床文本,并使用多维和灵活的评估指标进行共享评估,以评估工具包。
公共卫生相关性:在这个项目中,我们将为NLP研究开发一个公共可用的注释临床文本语料库。我们将尝试提高注释效率的方法,并将注释九种类型的去识别报告,以获得语言和临床信息。此外,我们将创建一个可以共享的NLP工具包,并将在与社区共享的任务评估中与其他NLP系统进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENDY W. CHAPMAN其他文献
WENDY W. CHAPMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENDY W. CHAPMAN', 18)}}的其他基金
University of Utah Interdisciplinary Training Program in Computational Approaches to Diabetes and Metabolism Research
犹他大学糖尿病和代谢研究计算方法跨学科培训项目
- 批准号:
9183480 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8022026 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8714052 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8333306 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8288078 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Annotation, development and evaluation for clinical information extraction (transfer)
临床信息提取(传输)的注释、开发和评估
- 批准号:
8868500 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8501543 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8231171 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8133360 - 财政年份:2010
- 资助金额:
-- - 项目类别:
NLP Foundational Studies & Ontologies for Syndromic Surveillance from ED Reports
NLP基础研究
- 批准号:
7908086 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant