NLP Foundational Studies & Ontologies for Syndromic Surveillance from ED Reports
NLP基础研究
基本信息
- 批准号:7908086
- 负责人:
- 金额:$ 13.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2010-10-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAreaCase StudyClinicalClinical DataConstitutionalDetectionDiscriminationExanthemaExhibitsIndividualInformaticsKnowledgeLearningLinguisticsMedical InformaticsMedical Informatics ApplicationsMethodsNatural Language ProcessingNeurologicOntologyPatientsPhysiciansRecordsReportingResearchResearch MethodologySemanticsSpecific qualifier valueStructureSyndromeSystemTechniquesTestingTextUncertaintyValidationcomputerizedgastrointestinalindexinginnovationquality assurancerespiratorysuccesssyndromic surveillancetool
项目摘要
DESCRIPTION (provided by applicant):
Many NLP applications have been successfully developed to extract information from text. Most of the
applications have focused on identifying individual clinical conditions in textual records, which is the first step in making the conditions available to computerized applications. However, identifying individual instances of clinical conditions is not sufficient for many medical informatics tasks - the context surrounding the condition is crucial for integrating the information within the text to determine the clinical state of a patient. We propose to perform in-depth studies on NLP issues requiring knowledge of the context of clinical conditions in clinical records. We will focus our research by using syndromic surveillance from emergency department (ED) reports as a case study.
For this proposal, we will test the following hypothesis: An NLP system that indexes clinical concepts and integrates contextual information modifying the concepts can identify acute clinical conditions from ED reports as well as physicians can.
We will identify clinical concepts necessary for surveillance of seven syndromes, including respiratory,
gastrointestinal, neurological, rash, hemorrhagic, constitutional, and botulinic. To evaluate the hypothesis, we will perform the following specific aims:
Aim 1. Perform in-depth, foundational studies on four NLP topics to gain a deeper understanding of the
pertinent NLP research capabilities required for identification of acute clinical conditions from ED reports, including negation, uncertainty, temporal discrimination, and finding validation;
Aim 2. Apply the knowledge learned from the foundational studies to develop and evaluate an automated application for ED reports that will determine the values for clinical variables relevant to identifying patients with any of seven syndromes.
The research is innovative, because it will generate an in-depth study of multiple NLP topics crucial to
understanding a patient's clinical state from textual records and will focus on contextual understanding and analysis. The research will be guided by linguistic principles, by the semantics and discourse structure of ED reports, and by the application area of biosurveillance. Because we will develop research methods and tools that are customized to a particular domain, we will constrain the research space, which will provide direction and enhance the chance for success. However, the methods and tools generated by this research should be extensible to other clinical report types and to other domain applications, because we will explicitly specify and study NLP concepts and relationships that are common to many application areas.
描述(由申请人提供):
许多 NLP 应用程序已成功开发用于从文本中提取信息。大部分的
应用程序的重点是识别文本记录中的个体临床状况,这是使这些状况可供计算机应用程序使用的第一步。然而,识别临床状况的个体实例对于许多医疗信息学任务来说是不够的——围绕该状况的上下文对于将信息整合到文本中以确定患者的临床状态至关重要。我们建议对需要了解临床记录中临床状况背景的 NLP 问题进行深入研究。我们将通过使用急诊科 (ED) 报告中的症状监测作为案例研究来集中研究。
对于该提案,我们将测试以下假设:索引临床概念并整合修改概念的上下文信息的 NLP 系统可以像医生一样从 ED 报告中识别急性临床状况。
我们将确定监测七种综合征所需的临床概念,包括呼吸道、
胃肠道、神经、皮疹、出血、体质和肉毒杆菌。为了评估该假设,我们将实现以下具体目标:
目标 1. 对四个 NLP 主题进行深入的基础研究,以更深入地了解
从 ED 报告中识别急性临床状况所需的相关 NLP 研究能力,包括否定、不确定性、时间歧视和结果验证;
目标 2. 应用从基础研究中学到的知识来开发和评估 ED 报告的自动化应用程序,该应用程序将确定与识别七种综合症患者相关的临床变量的值。
这项研究具有创新性,因为它将对多个 NLP 主题进行深入研究,这对
从文本记录中了解患者的临床状态,并将重点放在上下文理解和分析上。该研究将以语言学原理、ED报告的语义和话语结构以及生物监测的应用领域为指导。因为我们将开发针对特定领域定制的研究方法和工具,所以我们将限制研究空间,这将提供方向并增加成功的机会。然而,这项研究产生的方法和工具应该可以扩展到其他临床报告类型和其他领域应用,因为我们将明确指定和研究许多应用领域常见的 NLP 概念和关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENDY W. CHAPMAN其他文献
WENDY W. CHAPMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENDY W. CHAPMAN', 18)}}的其他基金
University of Utah Interdisciplinary Training Program in Computational Approaches to Diabetes and Metabolism Research
犹他大学糖尿病和代谢研究计算方法跨学科培训项目
- 批准号:
9183480 - 财政年份:2016
- 资助金额:
$ 13.09万 - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8022026 - 财政年份:2011
- 资助金额:
$ 13.09万 - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8714052 - 财政年份:2011
- 资助金额:
$ 13.09万 - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8333306 - 财政年份:2011
- 资助金额:
$ 13.09万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8288078 - 财政年份:2010
- 资助金额:
$ 13.09万 - 项目类别:
Annotation, development and evaluation for clinical information extraction (transfer)
临床信息提取(传输)的注释、开发和评估
- 批准号:
8868500 - 财政年份:2010
- 资助金额:
$ 13.09万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8501543 - 财政年份:2010
- 资助金额:
$ 13.09万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8231171 - 财政年份:2010
- 资助金额:
$ 13.09万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8133360 - 财政年份:2010
- 资助金额:
$ 13.09万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
7985218 - 财政年份:2010
- 资助金额:
$ 13.09万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 13.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 13.09万 - 项目类别:
Operating Grants














{{item.name}}会员




