Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
基本信息
- 批准号:7865088
- 负责人:
- 金额:$ 46.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressAdoptedAlgorithmsArchitectureAutomobile DrivingBackBehaviorBeliefBindingBiochemicalBiologicalBiological MarkersBiological ProcessCase StudyCell CycleCell Differentiation processCell LineCell physiologyCharacteristicsClinicalCollaborationsCollectionComplexComputational algorithmComputer softwareComputing MethodologiesDataData SetDatabasesDependencyDevelopmentDevelopmental ProcessDiagnosisDiagnosticDiagnostic Neoplasm StagingDiseaseDisease ProgressionDocumentationDrosophila genusDrug Delivery SystemsEmbryoEngineeringEventEvolutionExhibitsFoundationsGene ExpressionGene Expression RegulationGene ProteinsGene TargetingGenesGeneticGenomeGraphHandHeelHumanImageryImmune responseIndiumIndividualInternetInvestigationKnowledgeLaboratoriesLeadLearningLengthLightLiteratureLocationMachine LearningMeasurementMeasuresMediatingMedicalMethodologyMethodsMiningModalityModelingMolecularMolecular GeneticsMolecular ProfilingNatureNetwork-basedOntologyOrganismPathogenesisPathologic ProcessesPathway AnalysisPathway interactionsPatternPerformancePharmaceutical PreparationsPhysiological ProcessesPlayProblem FormulationsProcessPropertyProteinsPublicationsPublishingRNA InterferenceRegulationRegulator GenesRegulatory PathwayReportingResearchRoleSaccharomyces cerevisiaeSamplingSchemeScienceSeminalSeriesSignal TransductionSignal Transduction PathwaySimulateSoftware ToolsSolutionsSourceStagingStimulusStructureSystemSystems BiologyTechniquesTechnologyTerminologyTestingTimeTime StudyTissuesTreesUrsidae FamilyValidationVariantVisualWorkbasebiological systemscell behaviorcombinatorialcomputer based statistical methodscostdesigndriving forceenvironmental changefitnessgene functiongene interactiongraspheuristicsimprovedin vivoinnovationinsightinterestknockout genemalignant breast neoplasmmathematical modelnovelpeerpreventprogramspromoterprotein protein interactionpublic health relevanceresearch studyresponsescale upsoftware systemssoundsuccesstomographytooltraittrendtumor progressionuser friendly softwareyeast two hybrid system
项目摘要
DESCRIPTION (provided by applicant): A major challenge in systems biology is to quantitatively understand and model the dynamic topological and functional properties of cellular networks, such as the spatial-temporally specific and context-dependent rewiring of transcriptional regulatory circuitry and signal transduction pathways that control cell behavior. Current efforts to study biological networks have primarily focused on creating a descriptive analysis of macroscopic properties. Such simple analyses offer limited insights into the remarkably complex functional and structural organization of a biological system, especially in a dynamic context. Furthermore, most existing techniques for reconstructing molecular networks based on high-throughput data ignore the dynamic aspect of the network topology and represent it as an invariant graph. To our knowledge the network itself is rarely considered as an object that is changing and evolving. In this proposal, we aim to develop principled machine learning algorithms that reverse engineer the temporally and spatially varying interactions between biological molecules from longitudinal or spatial experimental data. Our approaches will take into account biological prior information such as transcriptional factor binding targets, gene knockout experiments, gene ontology, and PPI. Contrary to traditional co-expression studies, our methods unfold the rewiring networks underlying the entire span of the biological process. This will make it possible to discover and trace transient molecular interactions, modules, and pathways during the progression of the process. We will also develop a Bayesian formalism to model and infer the "dynamic network tomography" - the meta-states that determine each molecule's function and relationship to other molecules, thereby driving the evolution of the network topology, possibly in response to internal perturbations or environmental changes. Using these new tools, we will carry out a case study on time series gene expression data from organotypic models of breast cancer progression/reversal to gain insight into the mechanisms that drive the temporal rewiring of gene networks during this process. Finally we will also deliver a software platform offering the tools developed in this project to the public. So far, there has not been work done to consider temporally and spatially varying biological interactions under a unified framework. Our proposed work represents an initial foray into this important problem. Our proposed work represents a significant step forward over the current methodology. We envisage a new paradigm that facilitates: 1) Statistical inference and learning of gene networks that are evolving over space and time, possibly in response to various stimuli and possibly mediating genome-environmental interactions. 2) Thorough exploration of the underlying functional underpinnings that drive the network rewiring, dynamic trajectory, and trend of functional evolution. 3) Uncovering transient events taking place in the dynamic systems, building predictive understanding of the mechanisms of gene regulation, network formation, and evolution. 4) Fast and accurate computational algorithms, with stronger statistical guarantee and greater scalability and robustness in large-scale dynamic network analysis. 5) A full spectrum of convenient software packages and user interfaces for dynamic network analysis, available to the public.
描述(由申请人提供):系统生物学的一个主要挑战是定量理解和模拟细胞网络的动态拓扑和功能特性,例如时空特异性和上下文依赖性的转录调节电路和控制细胞行为的信号转导途径的重新布线。目前对生物网络的研究主要集中在对宏观特性进行描述性分析。这种简单的分析对生物系统中非常复杂的功能和结构组织提供了有限的见解,特别是在动态环境中。此外,大多数现有的基于高通量数据重建分子网络的技术忽略了网络拓扑的动态方面,并将其表示为不变图。据我们所知,网络本身很少被认为是一个不断变化和发展的对象。在本提案中,我们的目标是开发有原则的机器学习算法,从纵向或空间实验数据中对生物分子之间在时间和空间上变化的相互作用进行逆向工程。我们的方法将考虑到生物学的先验信息,如转录因子结合靶点、基因敲除实验、基因本体和PPI。与传统的共表达研究相反,我们的方法揭示了整个生物过程背后的重新布线网络。这将使发现和追踪瞬态分子相互作用、模块和过程进展中的途径成为可能。我们还将开发一个贝叶斯形式化模型来模拟和推断“动态网络断层扫描”——决定每个分子的功能和与其他分子的关系的元状态,从而推动网络拓扑结构的演变,可能是为了响应内部扰动或环境变化。利用这些新工具,我们将对来自乳腺癌进展/逆转的器官型模型的时间序列基因表达数据进行案例研究,以深入了解在此过程中驱动基因网络时间重新连接的机制。最后,我们还将提供一个软件平台,向公众提供在这个项目中开发的工具。到目前为止,还没有在一个统一的框架下考虑时间和空间变化的生物相互作用。我们提出的工作是对这一重要问题的初步尝试。我们提出的工作是在现有方法基础上向前迈出的重要一步。我们设想了一种新的范式,它可以促进:1)随着空间和时间的变化而进化的基因网络的统计推断和学习,可能是对各种刺激的反应,也可能是介导基因组与环境的相互作用。2)深入探索网络重新布线的功能基础、功能演化的动态轨迹和趋势。3)揭示发生在动态系统中的瞬时事件,建立对基因调控、网络形成和进化机制的预测性理解。4)计算算法快速准确,具有更强的统计保证,在大规模动态网络分析中具有更强的可扩展性和鲁棒性。5)为公众提供了一整套方便的软件包和用户界面,用于动态网络分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric P Xing其他文献
Dynamic Non-parametric Mixture Models and the Recurrent Chinese Restaurant Process Dynamic Non-parametric Mixture Models and the Recurrent Chinese Restaurant Process A
动态非参数混合模型和循环中餐馆过程 动态非参数混合模型和循环中餐馆过程 A
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Amr Ahmed;Eric P Xing - 通讯作者:
Eric P Xing
Eric P Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric P Xing', 18)}}的其他基金
Sample-specific Models for Molecular Portraits of Diseases in Precision Medicine
精准医学中疾病分子肖像的样本特定模型
- 批准号:
10707974 - 财政年份:2020
- 资助金额:
$ 46.09万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8727043 - 财政年份:2010
- 资助金额:
$ 46.09万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8531961 - 财政年份:2010
- 资助金额:
$ 46.09万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8079755 - 财政年份:2010
- 资助金额:
$ 46.09万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8294774 - 财政年份:2010
- 资助金额:
$ 46.09万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 46.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 46.09万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 46.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 46.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 46.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 46.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 46.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 46.09万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 46.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 46.09万 - 项目类别:














{{item.name}}会员




