Sample-specific Models for Molecular Portraits of Diseases in Precision Medicine
精准医学中疾病分子肖像的样本特定模型
基本信息
- 批准号:10707974
- 负责人:
- 金额:$ 29.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsAlzheimer&aposs DiseaseAreaAtlasesBioinformaticsBiologicalBiological AssayBusinessesClassificationClinicalCollaborationsCommunitiesComplexComputer softwareDNA Sequence AlterationDataData ScientistData SetDatabasesDiagnosisDiseaseEducationFeedbackFoundationsGenderGene ExpressionGene TargetingGeneticGenomeGenomicsGoalsHeterogeneityHistopathologyHospitalsHumanImageIndividualIndustryInstitutionInstructionInternationalKnowledgeLearningLinguisticsLinkLiteratureLogistic RegressionsMachine LearningMalignant NeoplasmsMathematicsMethodsModalityModelingMolecular ProfilingMultiomic DataOutcomePatientsPatternPhenotypePhysiciansPlayPortraitsRadiology SpecialtyResearch PersonnelRoleSamplingSeriesStatistical ModelsStructureTechniquesTextThe Cancer Genome AtlasTimeTrainingTranslatingVisualizationWorkcancer genomeclinical decision supportclinical diagnosisclinical predictorsclinically actionablecohortcomplex datadeep learningdeep neural networkdesigndisease diagnosisdisease prognosisexperienceheterogenous dataindividual patientinterestlarge datasetslarge-scale databasemolecular modelingmolecular subtypesmultidimensional datamultimodal datamultimodalitynext generationnext generation sequencingnovelnovel strategiespersonalized diagnosticspersonalized predictionsprecision medicinepredictive modelingsequencing platformsoftware developmentsoundstatisticstooltranscriptomicsuser friendly software
项目摘要
A fundamental challenge in precision medicine is to understand the patterns of differentiation between individuals. To
address this challenge, we propose to go beyond the traditional `one disease--one model' view of bioinformatics and
pursue a new view built upon personalized patient models that facilitates precision medicine by leveraging both
commonalities within a patient cohort as well as signatures unique to every individual patient. With the emergence of
large-scale databases such as The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium
(ICGC), and the Gene Expression Omnibus (GEO), which collect multi-omic data on many different diseases, a new
“pan-omics” and “pan-disease” paradigm has emerged to jointly analyze all patients in a disease cohort while
accounting for patient-specific effects. An example of this is the recently released Pan-Cancer Atlas. At the same time,
next generation statistical tools to accurately and rigorously draw the necessary inferences are lacking.
In this project we propose a series of mathematically rigorous, statistically sound, and computationally feasible
approaches to infer sample-specific models, providing a more complete view of heterogeneous datasets. By bringing
together ideas from the machine learning, statistics, and mathematical optimization communities, we provide a
rigorous framework for precision medicine via sample-specific statistical models. Crucially, we propose to analyze this
framework and prove strong theoretical guarantees under weak assumptions--this dramatically distinguishes our
framework from much of the existing literature. Towards these goals, we propose the following aims:
Aim 1: Discovery of new molecular profiles with sample-specific statistical models. We propose a general framework
for inferring sample-specific models with low-rank structure based on the novel concept of distance-matching. This
allows us to infer statistical models at the level of a single patient without overfitting, and is general enough to be
applied for prediction, classification, and network inference as well as a variety of diseases and phenotypes.
Aim 2: Multimodal approaches to personalized diagnosis--contextually interpretable models for actionable clinical
decision support. In order to translate these models into practice, we propose a novel interpretable predictive model
that supports complex, multimodal data types such as images and text combined with high-level interpretable features
such as SNP data, gender, age, etc. This framework simultaneously boosts the accuracy of clinical predictions by
exploiting sample heterogeneity while providing human-digestable explanations for the predictions being made.
Aim 3: Next-generation precision medicine--algorithms and software for personalized estimation. To put our models
into practical use, we will develop new algorithms for interpretable prediction of personalized clinical outcomes and
visualization of personalized statistical models. All of our tools will be combined into a user-friendly software package
called PrecisionX that will be freely available to researchers and clinicians everywhere.
RELEVANCE (See instructions):
Personalization with data is a critical challenge whenever decisions must be made at scale, and has applications that
go beyond precision medicine; businesses, educational institutions, and financial institutions are among the many
players that have acknowledged a stake in this complex problem. We expect the proposed work to provide a rigorous
foundation for personalization with large and high-dimensional datasets, finding use throughout the broader scientific
community as well as with industry and educational institutions. Alongside our collaboration with Pitt/UPMC, we will
work with physicians and data scientists for practical feedback as well as provide training in the methods developed.
精准医疗的一个基本挑战是理解个体之间的分化模式。来
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kernel Mixed Model for Transcriptome Association Study.
用于转录组关联研究的内核混合模型。
- DOI:10.1089/cmb.2022.0280
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang,Haohan;Lopez,Oscar;Xing,EricP;Wu,Wei
- 通讯作者:Wu,Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric P Xing其他文献
Dynamic Non-parametric Mixture Models and the Recurrent Chinese Restaurant Process Dynamic Non-parametric Mixture Models and the Recurrent Chinese Restaurant Process A
动态非参数混合模型和循环中餐馆过程 动态非参数混合模型和循环中餐馆过程 A
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Amr Ahmed;Eric P Xing - 通讯作者:
Eric P Xing
Eric P Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric P Xing', 18)}}的其他基金
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8727043 - 财政年份:2010
- 资助金额:
$ 29.92万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8531961 - 财政年份:2010
- 资助金额:
$ 29.92万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8079755 - 财政年份:2010
- 资助金额:
$ 29.92万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
8294774 - 财政年份:2010
- 资助金额:
$ 29.92万 - 项目类别:
Time/Space-Varying Networks of Molecular Interactions: A New Paradigm for Studyin
时空变化的分子相互作用网络:研究的新范式
- 批准号:
7865088 - 财政年份:2010
- 资助金额:
$ 29.92万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 29.92万 - 项目类别:
Research Grant














{{item.name}}会员




