Stem cell derived neurons and inherited epilepsy
干细胞衍生的神经元和遗传性癫痫
基本信息
- 批准号:7935492
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:2 year oldAction PotentialsAdultAffectAmino Acid SubstitutionAntibodiesAreaBiological AssayBiopsyCell LineCellsCellular biologyChildhoodCollectionComplementary DNACultured CellsDataDevelopmentDiseaseDisease modelEpilepsyExonsFebrile ConvulsionsFibroblastsFrequenciesFutureGene MutationGeneralized EpilepsyGenerationsGenesGlutamatesGoalsHereditary DiseaseHumanHuman EngineeringHuntington DiseaseIndividualInheritedInterneuronsIntronsKineticsLeadMessenger RNAMethodsMissense MutationModelingMolecularMotor NeuronsMutateMutationMyoclonic EpilepsiesNeonatalNeuronsParkinson DiseasePathogenesisPatientsPatternPhenotypePreclinical Drug EvaluationPropertyProsencephalonProtein TruncationPyramidal CellsRNARNA SplicingRelative (related person)Research PersonnelResistanceReverse Transcriptase Polymerase Chain ReactionScreening procedureSiteSkinSodium ChannelSomatic CellSplice-Site MutationStem cellsSystemTechniquesTestingTranscriptWorkbrain tissuedisabling diseaseembryonic stem cellgamma-Aminobutyric Acidhippocampal pyramidal neuronhuman embryonic stem cellinduced pluripotent stem cellinfancyinhibitory neuroninsightmutantnervous system disordernovel strategiesnull mutationpatient populationpluripotencypreventprotein expressionpublic health relevancetooltranscription factortreatment effectvoltage
项目摘要
DESCRIPTION (provided by applicant): This application is directed to Challenge Area 14, Stem cells, and Specific Challenge Topic 14- NS-101, Reverse engineering human neurological disease: generation of stem cells from control and patient populations. The recent development of induced pluripotent stem cells offers an exciting opportunity to examine the cellular pathogenesis of a severe form of childhood epilepsy, SMEI, which is caused by mutations in a neuron-specific sodium channel gene, SCN1A. SMEI is an intractable disorder with onset between 6 months and 2 years of age. Our lab was involved in the initial identification of SCN1A mutations in 2001. Since then more than 500 mutations in this gene have been identified in sporadic and familial epilepsies. However, because of the neuron-specific expression pattern and the inaccessibility of neurons from patients, it has not been possible to obtain reliable information about the effects of these SCN1A mutations on the electrophysiological activity and firing patterns of affected cells. Identification of the specific neurons targeted for pathogenesis, and understanding of the cellular abnormalities that result from SCN1A mutations, are essential for the development of effect treatments. During the past few months, using the iPSC approach, we have been able to generate neurons containing a splice site mutation of SCN1A using fibroblast cultures prepared from a skin biopsy of an SMEI patient. We have been able to record action potentials from bipolar and pyramidal neurons. Using specific antibodies, we have identified GABAergic and other types of neurons in our culture. To continue this work, we have obtained access to a collection of control and patient fibroblasts. We propose to carry out a detailed characterization of firing patterns and electrophysiological properties of patient neurons and compare them with induced neurons from control individuals, to identify the unique properties of neurons expressing pathogenic SCN1A mutations. We will also investigate neuronal-specific splicing patterns of developmentally regulated alternative exons. We will study neurons carrying three classes of SCN1A mutations: splice site mutations, protein truncation mutations, and amino acid substitutions. These studies can be completed within 2 years and will provide the groundwork for developing a screening assay to identify pharmacological agents that can reverse the effects of SCN1A mutations in cultured cells and convert the mutant cellular phenotypes to those of normal controls. Cell lines and data generated during the course of this two year project will be shared with other investigators. The methods we develop will be applicable to many other neurological disorders.
PUBLIC HEALTH RELEVANCE: Epilepsy is a common and debilitating neurological disorder, with a frequency of approximately 1 in 1,000 individuals. Many cases are resistant to currently available therapies. The severe genetic disorder SMEI has childhood onset and rapid progression and does not respond to treatment. Until now, it has not been possible to study the effects of SMEI mutations on nerve cells, because brain tissue from patients is not available for study. However, the newly developed technique of deriving neurons from skin biopsies means that SMEI and other neurological disorders can now be studied in molecular detail. We have succeeded in generating neurons from a patient with SMEI. These cells will be analyzed to determine the effects of the underlying mutation. After the molecular features of the abnormality are characterized, it may become possible to use these cultured neurons to screen for drugs which can prevent the progression of this disabling disease.
描述(由申请人提供):本申请针对挑战领域14,干细胞,以及特定挑战主题14-NS-101,反向工程人类神经疾病:从对照和患者群体中生成干细胞。诱导多能干细胞的最新发展为研究一种严重的儿童癫痫SMEI的细胞发病机制提供了一个令人兴奋的机会,SMEI是由神经元特异性钠通道基因SCN1A突变引起的。SMEI是一种难治性疾病,发病时间在6个月到2岁之间。我们的实验室在2001年参与了对SCN1A突变的初步鉴定。从那时起,在散发性和家族性癫痫中已经发现了500多个该基因的突变。然而,由于神经元的特异性表达模式和患者无法接触到的神经元,还不可能获得关于这些SCN1A突变对受影响细胞的电生理活动和放电模式的影响的可靠信息。识别特定的神经元作为发病机制的靶点,并了解由SCN1A突变导致的细胞异常,对于开发有效的治疗方法至关重要。在过去的几个月里,使用IPSC方法,我们已经能够使用从SMEI患者的皮肤活检中制备的成纤维细胞培养物来生成含有SCN1A剪接点突变的神经元。我们已经能够记录双极神经元和锥体神经元的动作电位。使用特定的抗体,我们已经在我们的培养中鉴定了GABA能和其他类型的神经元。为了继续这项工作,我们已经获得了对照和患者成纤维细胞的集合。我们建议对患者神经元的放电模式和电生理特性进行详细的表征,并将它们与来自对照个体的诱导神经元进行比较,以确定表达致病SCN1A突变的神经元的独特特性。我们还将研究发育调节的替代外显子的神经元特异性剪接模式。我们将研究携带三类SCN1A突变的神经元:剪接位点突变、蛋白质截断突变和氨基酸替换。这些研究可以在两年内完成,并将为开发筛选试验提供基础,以确定能够逆转培养细胞中SCN1A突变的影响并将突变的细胞表型转化为正常对照的药物。在这个为期两年的项目过程中产生的细胞系和数据将与其他研究人员共享。我们开发的方法将适用于许多其他神经疾病。
公共卫生相关性:癫痫是一种常见的、使人衰弱的神经疾病,其频率约为每1000人中有1人。许多病例对目前可用的治疗方法具有抵抗力。严重的遗传性疾病SMEI起病于童年,进展迅速,对治疗没有反应。到目前为止,还不可能研究SMEI突变对神经细胞的影响,因为无法获得患者的脑组织进行研究。然而,新开发的从皮肤活检中提取神经元的技术意味着,现在可以对SMEI和其他神经疾病进行分子细节研究。我们已经成功地从一名SMEI患者身上培养出神经元。将对这些细胞进行分析,以确定潜在突变的影响。在表征了这种异常的分子特征后,可能会使用这些培养的神经元来筛选可以防止这种致残性疾病进展的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIRIAM H MEISLER其他文献
MIRIAM H MEISLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIRIAM H MEISLER', 18)}}的其他基金
Stem cell derived neurons and inherited epilepsy
干细胞衍生的神经元和遗传性癫痫
- 批准号:
7832240 - 财政年份:2009
- 资助金额:
$ 49.98万 - 项目类别:
NEUROMUSCULAR DISEASE GENE ENCODING A NEW SODIUM CHANNEL
编码新钠通道的神经肌肉疾病基因
- 批准号:
6187758 - 财政年份:1996
- 资助金额:
$ 49.98万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 49.98万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 49.98万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)