Predicting Cardiovascular Risk in Vulnerable Plaque Rupture

预测易损斑块破裂的心血管风险

基本信息

  • 批准号:
    7937740
  • 负责人:
  • 金额:
    $ 35.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (05): Comparative Effectiveness Research; Challenge Topic 05-HL-104 Reducing cardiovascular risk in moderate-risk and asymptomatic patients. More than half of the 500,000 coronary artery deaths each year in the U.S. from acute coronary syndrome are due to the rupture of the thin fibrous cap overlying the necrotic core of the lesion and the formation of a thrombus. The mechanism as to why some thin caps rupture and others do not is very likely the single most important unanswered question in life threatening atherothrombotic lesions. We recently proposed a new paradigm of thin cap fibroatheroma (TCFA) rupture, suggesting that minute calcifications located in the cap itself increase tissue stress concentration and plaque vulnerability. Microcalcifications can lead to cavitation induced debonding, a process in which the tissue in the cap will pull away from the calcified inclusion and tear when tensile stress in the tissue due to blood pressure becomes too large. The first experimental evidence for this new paradigm was recently provided using confocal microscopy and high resolution micro computed tomography. In Aim 1 we will use a high resolution micro-CT imaging system to examine a much broader sample of ruptured and non-ruptured human thin cap fibroatheroma and statistically analyze the frequency, size, shape and spatial distribution of the cellular-level microcalcifications. In Aim 2 we quantitatively evaluate the impact of the microcalcifications on the biomechanical stability of the cap using a three-dimensional (3D) multi-level finite element model (FEM) of realistic 3D geometries of human coronary lesions based on high resolution micro-CT imaging. We will investigate the stress concentration effect produced by the size, shape and presence of multiple microcalcifications in close proximity within a region of high peak circumferential stress (PCS), on the biomechanics of cap rupture. This multi-level micro-CT based approach has the ability to include the fine grain structure required to imbed local solutions in the vicinity of the microinclusions, which is critical to determine the PCS amplification leading to fibroatheroma rupture. These studies, if successful, could resolve the long-standing mystery as to why some vulnerable plaque lesions are more prone to rupture than others and, as a result, provide vital new criteria for the detection and treatment of vulnerable plaque. PUBLIC HEALTH RELEVANCE: The rupture of the thin fibrous cap overlying the necrotic core of a vulnerable plaque is the principal cause of acute coronary syndrome. Unfortunately, the mechanism of vulnerable plaque rupture has remained a mystery. We proposed that the rupture of thin cap fibroatheroma may be caused by minute calcifications in the cap itself due to tissue stress concentration and provided the first experimental evidence for this new paradigm. We will investigate the impact of microcalcifications on cap rupture using a three-dimensional (3D) multi-level finite element model of realistic 3D geometries of human coronary lesions based on high resolution micro-CT imaging. If successful, this study may provide important insights on the rupture of fibrous cap atheromas responsible for more than half of the 500,000 coronary artery disease deaths in US every year.
描述(由申请人提供):本申请涉及广泛的挑战领域(05):比较有效性研究;挑战主题05-HL-104降低中度风险和无症状患者的心血管风险。在美国每年50万例急性冠状动脉综合征的冠状动脉死亡中,超过一半是由于覆盖病变坏死核心的薄纤维帽破裂和血栓形成。为什么一些薄帽破裂而另一些不破裂的机制很可能是危及生命的动脉粥样硬化血栓病变中最重要的一个未回答的问题。我们最近提出了一个新的范例薄帽纤维粥样硬化(TCFA)破裂,表明位于帽本身的微小钙化增加组织应力集中和斑块的脆弱性。微钙化可导致空化诱导的脱粘,在该过程中,当由于血压导致的组织中的拉伸应力变得过大时,帽中的组织将从钙化的内含物拉开并撕裂。最近,使用共聚焦显微镜和高分辨率显微计算机断层扫描提供了这种新模式的第一个实验证据。在目标1中,我们将使用高分辨率显微CT成像系统来检查破裂和非破裂的人类薄帽纤维粥样硬化的更广泛的样本,并统计分析细胞水平微钙化的频率、大小、形状和空间分布。在目标2中,我们使用基于高分辨率micro-CT成像的人体冠状动脉病变真实三维几何形状的三维(3D)多级有限元模型(FEM)定量评价微钙化对帽生物力学稳定性的影响。我们将研究在高峰周向应力(PCS)区域内多个微钙化的大小、形状和存在对帽断裂生物力学的应力集中效应。这种基于多级显微CT的方法能够包括在微内含物附近嵌入局部溶液所需的细粒结构,这对于确定导致纤维粥样硬化破裂的PCS放大是至关重要的。这些研究如果成功,可以解决长期存在的谜团,即为什么一些易损斑块病变比其他病变更容易破裂,从而为易损斑块的检测和治疗提供重要的新标准。 公共卫生关系:覆盖在易损斑块坏死核心上的薄纤维帽破裂是急性冠状动脉综合征的主要原因。不幸的是,易损斑块破裂的机制仍然是一个谜。我们提出薄帽纤维粥样硬化的破裂可能是由于组织应力集中引起的帽本身的微小钙化引起的,并为这种新的范例提供了第一个实验证据。我们将使用基于高分辨率micro-CT成像的人体冠状动脉病变的真实三维几何形状的三维(3D)多级有限元模型研究微钙化对冠状动脉帽破裂的影响。如果成功,这项研究可能会提供重要的见解,纤维帽动脉粥样硬化破裂负责超过一半的500,000冠状动脉疾病死亡在美国每年。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheldon Weinbaum其他文献

Sheldon Weinbaum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheldon Weinbaum', 18)}}的其他基金

Predicting Cardiovascular Risk in Vulnerable Plaque Rupture
预测易损斑块破裂的心血管风险
  • 批准号:
    7835191
  • 财政年份:
    2009
  • 资助金额:
    $ 35.66万
  • 项目类别:
Cytoskeletal Strain Amplification due to Bone Fluid Flow
骨液流动引起的细胞骨架应变放大
  • 批准号:
    7056809
  • 财政年份:
    2002
  • 资助金额:
    $ 35.66万
  • 项目类别:
Cytoskeletal Strain Amplification due to Bone Fluid Flow
骨液流动引起的细胞骨架应变放大
  • 批准号:
    6730032
  • 财政年份:
    2002
  • 资助金额:
    $ 35.66万
  • 项目类别:
Cytoskeletal Strain Amplification due to Bone Fluid Flow
骨液流动引起的细胞骨架应变放大
  • 批准号:
    6466480
  • 财政年份:
    2002
  • 资助金额:
    $ 35.66万
  • 项目类别:
Cytoskeletal Strain Amplification due to Bone Fluid Flow
骨液流动引起的细胞骨架应变放大
  • 批准号:
    6604292
  • 财政年份:
    2002
  • 资助金额:
    $ 35.66万
  • 项目类别:
Cytoskeletal Strain Amplification due to Bone Fluid Flow
骨液流动引起的细胞骨架应变放大
  • 批准号:
    6878042
  • 财政年份:
    2002
  • 资助金额:
    $ 35.66万
  • 项目类别:
A National Urban Model for Minority Undergraduate Biome*
少数民族本科生生物群落国家城市模型*
  • 批准号:
    6443211
  • 财政年份:
    2001
  • 资助金额:
    $ 35.66万
  • 项目类别:
Urban Model for Minority Undergrad Biomeded Education
少数民族本科生生物医学教育城市模型
  • 批准号:
    7150783
  • 财政年份:
    2001
  • 资助金额:
    $ 35.66万
  • 项目类别:
A National Urban Model for Minority Undergraduate Biome*
少数民族本科生生物群落国家城市模型*
  • 批准号:
    6936003
  • 财政年份:
    2001
  • 资助金额:
    $ 35.66万
  • 项目类别:
A National Urban Model for Minority Undergraduate Biomedical Education
全国少数民族本科生物医学教育城市模式
  • 批准号:
    7488784
  • 财政年份:
    2001
  • 资助金额:
    $ 35.66万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了