Gene therapy using homologous recombination in mouse spermatogonial stem cells
在小鼠精原干细胞中使用同源重组进行基因治疗
基本信息
- 批准号:7772082
- 负责人:
- 金额:$ 19.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibiotic ResistanceAutologous TransplantationBiological AssayBiopsyBreedingCell CycleCell Cycle StageCell Differentiation processCell LineCell TransplantsCellsDNADNA Binding DomainDependovirusDevelopmentDiseaseEmbryoEngineeringEventFertilizationFluorescenceGene DeliveryGene TargetingGenesGeneticGerm CellsGoalsGreen Fluorescent ProteinsHereditary DiseaseHumanIn VitroKnock-in MouseLentivirus VectorMediatingMethodsModelingModificationMolecularMusMutateMutationOncogene ActivationOrganismPatientsProcessProcessed GenesProteinsRouteSiteSomatic CellSourceStem cell transplantStem cellsTestingTestisTherapeuticTransgenesTransgenic OrganismsTransplantationValidationZinc FingersbasecDNA Expressioncell typeclinically relevantembryonic stem cellgene correctiongene therapyhomologous recombinationinterestmenmouse modelmutantnext generationnucleaseprotein expressionpublic health relevancerepairedself-renewalstemstem cell differentiationsuccesstechnology developmenttheoriestooltransmission processtumorigenesis
项目摘要
DESCRIPTION (provided by applicant): The road toward curing genetic diseases by gene therapy has seen some success but also significant disappointment. In particular, gene addition via uncontrolled insertion of transgenes has been associated with insertional oncogenesis and silencing. Gene targeting, correction of the endogenous gene sequence, is preferable as it avoids both of these issues. While the spontaneous rate of gene targeting in most cell types is very low, zinc finger nucleases (ZFNs) have recently been shown to be an excellent tool for stimulating homologous recombination between an exogenous repair (donor) DNA template and the endogenous locus by introducing a double strand break in the locus of interest. ZFNs are artificial proteins consisting of an engineered DNA binding domain and nuclease domain. So far ZFNs have been used to stimulate gene targeting in a variety of somatic cell types and organisms; however, to bring their therapeutic benefit to fruition will require their successful application in stem cells. To establish clinically relevant ZFN-mediated gene targeting, very high absolute rates of gene targeting must first be attained, or methods for selecting and expanding rare targeted cells in vitro must be developed. This proposal addresses both of these approaches. Previously validated ZFNs will be used to stimulate gene targeting in spermatogonial stem cells (SSCs) derived from a mouse homozygous for a mutant GFP gene knocked-in to the Rosa26 locus. This mouse models an autosomal recessive disease. In Aim 1 ZFN-mediated gene targeting will be optimized in SSCs by testing parameters including gene delivery method, cell cycle and cell differentiation state. The completion of this aim should help to define the requirements for gene therapy in germline and somatic stem cells. In Aim 2 cultured SSCs will be used to model the therapeutic process of ex vivo ZFN-mediated gene correction, selection, amplification, molecular characterization and transplantation. In addition to testing methods for isolation and expansion of rare gene-corrected stem cells, the accomplishment of this aim provides proof of principle for transgenerational gene therapy at a chromosomal locus in mice; that is, the ability of germ cells to transmit a corrected gene to the next generation. Mouse and human spermatogonial stem cells (SSCs) have recently been shown to be capable of dedifferentiation into pluripotent embryonic stem - like cells. This exciting discovery has led to the proposal that the testis could be an excellent source of histocompatible cells for autologous transplantation in men. One day it may be possible to cure genetic diseases by deriving patient-specific pluripotent cells from a testicular biopsy, correcting a mutated gene in vitro, differentiating the cells into the desired cell type and then performing transplantation to replace the diseased cells. An important first step toward this ambitious goal is the development of technology for efficient gene targeting in SSCs as described in this proposal.
PUBLIC HEALTH RELEVANCE: Correcting a mutated gene in stem cells and transplanting the corrected stem cells into a patient could be an effective way to cure certain genetic diseases. A promising new method to correct mutant genes is to cut the gene using molecular scissors (zinc finger nucleases), a process that then stimulates the exchange of the mutated gene sequence with an exogenously provided normal gene sequence. We propose to test and optimize this process of gene correction in cultured spermatogonial stem cells, cells with great therapeutic potential and that are highly related to pluripotent embryonic stem cells.
描述(申请人提供):通过基因疗法治愈遗传疾病的道路取得了一些成功,但也令人失望。特别是,通过不受控制的转基因插入进行的基因添加与插入肿瘤发生和沉默有关。基因打靶,即内源基因序列的校正,是更可取的,因为它避免了这两个问题。虽然大多数细胞类型中基因靶向的自发率非常低,但锌指核酸酶 (ZFN) 最近已被证明是一种极好的工具,可通过在目标基因座中引入双链断裂来刺激外源修复(供体)DNA 模板与内源基因座之间的同源重组。 ZFN 是由工程 DNA 结合域和核酸酶域组成的人工蛋白质。迄今为止,ZFN 已被用于刺激多种体细胞类型和生物体中的基因靶向;然而,要实现它们的治疗效果,需要它们在干细胞中的成功应用。为了建立临床相关的 ZFN 介导的基因靶向,必须首先达到非常高的基因靶向绝对率,或者必须开发在体外选择和扩展稀有靶向细胞的方法。该提案涉及这两种方法。先前验证的 ZFN 将用于刺激精原干细胞 (SSC) 中的基因靶向,该细胞源自小鼠纯合子,其中敲入了 Rosa26 基因座的突变 GFP 基因。这只小鼠模拟了一种常染色体隐性遗传疾病。目标 1 将通过测试参数(包括基因递送方法、细胞周期和细胞分化状态)在 SSC 中优化 ZFN 介导的基因靶向。这一目标的完成应有助于确定生殖系和成体干细胞基因治疗的要求。在 Aim 2 中,培养的 SSC 将用于模拟离体 ZFN 介导的基因校正、选择、扩增、分子表征和移植的治疗过程。除了测试分离和扩增稀有基因校正干细胞的方法外,这一目标的实现还为小鼠染色体位点的跨代基因治疗提供了原理证明。也就是说,生殖细胞将正确的基因传递给下一代的能力。小鼠和人类精原干细胞(SSC)最近被证明能够去分化为多能胚胎干细胞样细胞。这一令人兴奋的发现促使人们提出睾丸可能是男性自体移植的组织相容性细胞的极好来源。有一天,通过从睾丸活检中获取患者特异性多能细胞,在体外纠正突变基因,将细胞分化为所需的细胞类型,然后进行移植以替换患病细胞,也许可以治愈遗传性疾病。实现这一宏伟目标的重要第一步是开发本提案中所述的 SSC 有效基因靶向技术。
公共健康相关性:纠正干细胞中的突变基因并将纠正的干细胞移植到患者体内可能是治疗某些遗传疾病的有效方法。一种有前途的纠正突变基因的新方法是使用分子剪刀(锌指核酸酶)切割基因,该过程随后刺激突变基因序列与外源提供的正常基因序列的交换。我们建议在培养的精原干细胞中测试和优化这种基因校正过程,这些细胞具有巨大的治疗潜力,并且与多能胚胎干细胞高度相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina Tenenhaus Dann其他文献
Christina Tenenhaus Dann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christina Tenenhaus Dann', 18)}}的其他基金
Molecular control of spermatogonial stem cell fate for achieving cell therapy
精原干细胞命运的分子控制以实现细胞治疗
- 批准号:
8526486 - 财政年份:2012
- 资助金额:
$ 19.25万 - 项目类别:
Molecular control of spermatogonial stem cell fate for achieving cell therapy
精原干细胞命运的分子控制以实现细胞治疗
- 批准号:
8986803 - 财政年份:2012
- 资助金额:
$ 19.25万 - 项目类别:
Molecular control of spermatogonial stem cell fate for achieving cell therapy
精原干细胞命运的分子控制以实现细胞治疗
- 批准号:
8370640 - 财政年份:2012
- 资助金额:
$ 19.25万 - 项目类别:
Gene therapy using homologous recombination in mouse spermatogonial stem cells
在小鼠精原干细胞中使用同源重组进行基因治疗
- 批准号:
8019497 - 财政年份:2010
- 资助金额:
$ 19.25万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 19.25万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 19.25万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 19.25万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 19.25万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 19.25万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 19.25万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 19.25万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 19.25万 - 项目类别: