New methods to deliver therapeutic drugs in myocardial ischemia/reperfusion injur

心肌缺血/再灌注损伤递送治疗药物的新方法

基本信息

  • 批准号:
    7773180
  • 负责人:
  • 金额:
    $ 18.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-02-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant):: Protecting myocytes from death is the best way to lower the mortality associated with myocardial infarction (MI). MI results from ischemia/reperfusion injury (IR). IR causes many detrimental changes in the biochemical and structural composition of myocytes including a rapid decrease in high-energy phosphate (ATP), destabilization and/or damage to the myocyte cytoskeleton, and progressive mitochondrial damage. It has been established that oxygen-derived free radicals (ODFR) play an important role in the overall injury associated with IR especially during the reperfusion phase. Reperfusion results in additional myocyte necrosis, which further increases the morbidity and mortality associated with MI. Over the past 20 years many drugs, including free radical scavengers, adenosine, and sodium-hydrogen exchange inhibitors, which have showed promise in animal models in reducing or inhibiting necrosis have been tried in human trials but have not proven to be beneficial in improving morbidity or mortality. Among the reasons that clinical trials of anti-ischemic compounds may have failed include: 1) the inability of potent drugs to reach effective concentrations without causing systemic side effects/toxicity; and/or 2) the inability to achieve effective concentrations of the drug at the myocyte. To truly know whether anti-ischemic drugs have a significant benefit in reducing infarct size requires delivery at an effective concentration at the correct time; at the start of reperfusion. The rapid development of nanotechnology has allowed the design of new delivery vehicles capable of trafficking drugs to specific areas where the action is most effective. In this highly interactive and integrated application, we propose to design and develop a new and unique delivery vehicle using state of the art pharmaceutical techniques capable of delivering therapeutic drugs to acidotic tissue. Delivering the drug to the acidotic tissue will allow rapid and sustained delivery of catalase to the myocardium throughout the reperfusion period. In these initial studies, we will use the endogenous anti-oxidant protein catalase. In addition to characterizing and optimizing the delivery of catalase-particles to ventricular myocytes, we will test the ability of delivered catalase to inhibit myocyte cell death using both in vitro and in vivo model systems of IR. If we are successful, this new vehicle would provide renewed opportunities for antioxidant drugs as well as stimulate the development of new therapeutic agents selectively designed to target many areas of IR injury as well as other aspects of myocardial infarction. PUBLIC HEALTH RELEVANCE: If achievable, this drug delivery vehicle could be given to a patient with a developing heart attack (i.e. a developing myocardial infarct) in the field or in the emergency department and directly reduce the cell death resulting from the event. The best predictor of morbidity and mortality subsequent to myocardial infarction is the amount of heart tissue that dies. Therefore, if the drug reduces the amount of cell death, it will directly reduce morbidity, mortality, and the cost to the patient and the overall health care system. Furthermore, our delivery vehicle is not restricted to the use of a single drug. In these initial studies we will use the readily available, well-characterized antioxidant catalase. However, the delivery vehicle would be adaptable to many other free radical scavengers as well other drugs that could be designed to directly reduce or prevent myocyte cell death. The ultimate outcome of such a drug delivery vehicle could have a large impact on the health care system in the United States.
描述(申请人提供):保护心肌细胞免于死亡是降低与心肌梗死(MI)相关的死亡率的最好方法。MI是由缺血/再灌注损伤(IR)引起的。IR导致心肌细胞生化和结构组成的许多不利变化,包括高能磷酸(ATP)的迅速减少,心肌细胞骨架的不稳定和/或损伤,以及进行性线粒体损伤。已证实氧自由基(ODFR)在IR相关的整体损伤中起着重要作用,尤其是在再灌注期。再灌注会导致额外的心肌细胞坏死,从而进一步增加与MI相关的发病率和死亡率。在过去的20年里,许多药物,包括自由基清除剂、腺苷和钠氢交换抑制剂,在动物模型中显示出减少或抑制坏死的前景,已经在人体试验中进行了试验,但没有被证明对改善发病率或死亡率有好处。抗缺血化合物临床试验失败的原因可能包括:1)有效药物无法在不引起全身副作用/毒性的情况下达到有效浓度;和/或2)无法在心肌细胞达到有效浓度。为了真正了解抗缺血药物在缩小梗塞面积方面是否有显著的益处,需要在正确的时间以有效的浓度给药;在再灌流开始时。纳米技术的迅速发展使得能够设计能够将毒品贩运到行动最有效的特定地区的新运输工具。在这一高度互动和集成的应用中,我们建议利用最先进的制药技术设计和开发一种新的和独特的递送载体,能够将治疗药物递送到酸化组织。将药物输送到酸性组织将允许在整个再灌注期内将过氧化氢酶快速和持续地输送到心肌。在这些初步研究中,我们将使用内源性抗氧化蛋白过氧化氢酶。除了表征和优化过氧化氢酶颗粒对心肌细胞的输送,我们还将使用体外和体内IR模型系统来测试所输送的过氧化氢酶颗粒抑制心肌细胞死亡的能力。如果我们成功,这种新的载体将为抗氧化剂提供新的机会,并刺激新治疗药物的开发,这些药物选择性地针对IR损伤的许多区域以及心肌梗死的其他方面。 公共卫生相关性:如果可以实现,这种药物输送载体可以提供给外地或急诊科正在发展中的心脏病发作(即正在发展中的心肌梗死)的患者,并直接减少事件导致的细胞死亡。心肌梗死后发病率和死亡率的最佳预测指标是死亡的心脏组织的数量。因此,如果药物减少了细胞死亡的数量,它将直接降低发病率、死亡率,并降低患者和整个医疗保健系统的成本。此外,我们的递送工具并不限于使用单一药物。在这些初步研究中,我们将使用现成的、特性良好的抗氧化剂过氧化氢酶。然而,这种载体将适用于许多其他自由基清除剂,以及其他可以设计成直接减少或防止心肌细胞死亡的药物。这种药物输送工具的最终结果可能会对美国的医疗保健系统产生很大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Vander Heide其他文献

Richard Vander Heide的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Vander Heide', 18)}}的其他基金

New methods to deliver therapeutic drugs in myocardial ischemia/reperfusion injur
心肌缺血/再灌注损伤递送治疗药物的新方法
  • 批准号:
    8013912
  • 财政年份:
    2010
  • 资助金额:
    $ 18.92万
  • 项目类别:
Cytoskeletal-Based Survival Pathways in Myocardium
心肌中基于细胞骨架的生存途径
  • 批准号:
    7338343
  • 财政年份:
    2007
  • 资助金额:
    $ 18.92万
  • 项目类别:
Cytoskeletal-Based Survival Pathways in Myocardium
心肌中基于细胞骨架的生存途径
  • 批准号:
    7564097
  • 财政年份:
    2007
  • 资助金额:
    $ 18.92万
  • 项目类别:
Cytoskeletal-Based Survival Pathways in Myocardium
心肌中基于细胞骨架的生存途径
  • 批准号:
    7912525
  • 财政年份:
    2007
  • 资助金额:
    $ 18.92万
  • 项目类别:
Cytoskeletal-Based Survival Pathways in Myocardium
心肌中基于细胞骨架的生存途径
  • 批准号:
    7204272
  • 财政年份:
    2007
  • 资助金额:
    $ 18.92万
  • 项目类别:
SIGNAL TRANSDUCTION IN MYOCARDIAL ISCHEMIC INJURY
心肌缺血性损伤中的信号转导
  • 批准号:
    6183874
  • 财政年份:
    1999
  • 资助金额:
    $ 18.92万
  • 项目类别:
SIGNAL TRANSDUCTION IN MYOCARDIAL ISCHEMIC INJURY
心肌缺血性损伤中的信号转导
  • 批准号:
    2851823
  • 财政年份:
    1999
  • 资助金额:
    $ 18.92万
  • 项目类别:
SIGNAL TRANSDUCTION IN MYOCARDIAL ISCHEMIC INJURY
心肌缺血性损伤中的信号转导
  • 批准号:
    6389808
  • 财政年份:
    1999
  • 资助金额:
    $ 18.92万
  • 项目类别:

相似海外基金

Understanding the Impacts of Lewis Acidity and Coordination on Butyl Rubber Polymerization
了解路易斯酸度和配位对丁基橡胶聚合的影响
  • 批准号:
    575175-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Alliance Grants
New Concepts in Lewis Acidity, Catalysis, and Polymer Science: Functional Main Group Cages
路易斯酸、催化和高分子科学的新概念:功能主族笼
  • 批准号:
    RGPIN-2018-05574
  • 财政年份:
    2022
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Discovery Grants Program - Individual
Constraining the Sulphur Cycling Pathway Causing Delayed Acidity in Mine Wastewater
限制硫循环路径导致矿山废水酸度延迟
  • 批准号:
    568873-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Quantifying Lewis acidity for Chemoselective Lewis acid Catalysis
化学选择性路易斯酸催化中路易斯酸度的定量
  • 批准号:
    559925-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Control of Inflammatory Acidity in Mucosal Inflammation
粘膜炎症中炎症酸度的控制
  • 批准号:
    10512056
  • 财政年份:
    2021
  • 资助金额:
    $ 18.92万
  • 项目类别:
New Concepts in Lewis Acidity, Catalysis, and Polymer Science: Functional Main Group Cages
路易斯酸、催化和高分子科学的新概念:功能主族笼
  • 批准号:
    RGPIN-2018-05574
  • 财政年份:
    2021
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Permissive acidity as a regulator of plant cell expansion
职业:允许的酸度作为植物细胞扩张的调节剂
  • 批准号:
    2045795
  • 财政年份:
    2021
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Standard Grant
Elucidation of rhizospheric consortium responses to two gradients of climate and soil acidity
阐明根际群落对气候和土壤酸度两个梯度的响应
  • 批准号:
    21H02232
  • 财政年份:
    2021
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Control of Inflammatory Acidity in Mucosal Inflammation
粘膜炎症中炎症酸度的控制
  • 批准号:
    10255086
  • 财政年份:
    2021
  • 资助金额:
    $ 18.92万
  • 项目类别:
Quantifying Lewis acidity for Chemoselective Lewis acid Catalysis
化学选择性路易斯酸催化中路易斯酸度的定量
  • 批准号:
    559925-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 18.92万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了