Development and Dissemination of Robust Brain MRI Measurement Tools

强大的脑 MRI 测量工具的开发和传播

基本信息

  • 批准号:
    7922625
  • 负责人:
  • 金额:
    $ 38.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-17 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Development and Dissemination of Robust Brain MRI Measurement Tools Abstract: This application responds to RFA: PAR-07-249, "Collaborations with National Centers for Biomedical Computing". The goal of this project is to develop and widely distribute a software package for robust measurement of brain structure in MR images by using computational neuroanatomy methods. The project will collaborate with the National Alliance for Medical Image Computing (NA-MIC) to develop the software using the NA-MIC Software Engineering Process, leverage the NA-MIC engineering infrastructure, and integrate this software into the 3D Slicer, a well-architected application environment being developed in NA-MIC. The particular software package will include both a brain image registration and warping algorithm, called HAMMER, and an algorithm for the segmentation of white matter lesions (WMLs), which can arise from a variety of pathologies including vascular pathology and multiple sclerosis. HAMMER received 2006 Best Paper Award from IEEE Signal Processing Society. HAMMER has been successfully applied to many large clinical research studies and clinical trials involving over 5,000 MR brain images and has been downloaded by 318 users from 102 institutions in over 20 countries. The WML segmentation algorithm has been successfully applied to "Action to Control Cardiovascular Risk in Diabetes-Memory in Diabetes" (ACCORD-MIND) sub- study, with data acquired from 4 centers on 650 patients over a period of 8 years. Designing an easy-to-use, robust software package for these two algorithms and incorporating it into the 3D Slicer will benefit a large community of end-users that need access to advanced image analysis methods in various neuroimaging studies. To increase the robustness of the algorithms to the highly variable quality and characteristics of clinical image data, further algorithm development is necessary. To increase ease of use by non-experts in computer analysis methods and integrate this software into the Slicer platform, significant software engineering efforts are planned. Three aims will be investigated. The first aim is to further develop and extend novel image analysis methods aiming at improving the robustness and performance of HAMMER registration and WML segmentation algorithms, so that they can be easily applied to various clinical research studies. The second and third aims are to design separate software modules for these two algorithms, and to incorporate them into the 3D Slicer. These two modules will be designed (1) with consistent cross-platform interactive and scripted interfaces, (2) allowing end-users to interactively explore the suitable parameters for their data, (3) enabling developers to add new functions. The robustness of these two modules will be extensively tested and improved by both software engineering tools and various clinical research data (acquired from different centers). The final software will be freely available in both source code and pre-compiled programs. PUBLIC HEALTH REVELANCE: The goal of this project is to develop and widely distribute a software package for robust measurement of brain structure in MR images by using computational neuroanatomy methods.
描述(由申请人提供):强大的脑MRI测量工具的开发和传播摘要:本申请响应RFA:PAR-07-249,“与国家生物医学计算中心的合作”。该项目的目标是开发并广泛分发一个软件包,用于通过使用计算神经解剖学方法在MR图像中对大脑结构进行鲁棒测量。该项目将与国家医学图像计算联盟(NA-MIC)合作,使用NA-MIC软件工程流程开发软件,利用NA-MIC工程基础设施,并将该软件集成到NA-MIC正在开发的3D Slicer中,这是一个架构良好的应用环境。该特定软件包将包括称为HAMMER的大脑图像配准和变形算法,以及用于分割白色病变(WML)的算法,这些病变可能源于各种病理,包括血管病理和多发性硬化症。HAMMER获得IEEE信号处理学会2006年最佳论文奖。HAMMER已成功应用于许多大型临床研究和临床试验,涉及5,000多张MR脑图像,并已被来自20多个国家102家机构的318名用户下载。WML分割算法已成功应用于“控制糖尿病心血管风险的行动-糖尿病记忆”(ACCORD-MIND)子研究,数据来自4个中心的650例患者,为期8年。为这两种算法设计一个易于使用、强大的软件包并将其纳入3D Slicer将使需要在各种神经成像研究中使用高级图像分析方法的大量最终用户受益。为了提高算法对临床图像数据的高度可变质量和特征的鲁棒性,需要进一步开发算法。为了提高计算机分析方法的非专家的易用性,并将该软件集成到Slicer平台中,计划进行重大的软件工程工作。将调查三个目标。第一个目标是进一步开发和扩展新的图像分析方法,旨在提高HAMMER配准和WML分割算法的鲁棒性和性能,以便它们可以轻松地应用于各种临床研究。第二个和第三个目标是为这两种算法设计单独的软件模块,并将它们集成到3D Slicer中。这两个模块将设计为(1)具有一致的跨平台交互和脚本界面,(2)允许最终用户交互式地探索其数据的合适参数,(3)使开发人员能够添加新功能。这两个模块的稳健性将通过软件工程工具和各种临床研究数据(从不同中心获得)进行广泛测试和改进。最终的软件将以源代码和预编译程序的形式免费提供。公共卫生部门:该项目的目标是开发并广泛分发一个软件包,用于通过使用计算神经解剖学方法在MR图像中对大脑结构进行鲁棒测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dinggang Shen其他文献

Dinggang Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dinggang Shen', 18)}}的其他基金

Automatic Pelvic Organ Delineation in Prostate Cancer Treatment
前列腺癌治疗中的自动盆腔器官描绘
  • 批准号:
    9186673
  • 财政年份:
    2016
  • 资助金额:
    $ 38.49万
  • 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
  • 批准号:
    8725738
  • 财政年份:
    2013
  • 资助金额:
    $ 38.49万
  • 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
  • 批准号:
    8583365
  • 财政年份:
    2013
  • 资助金额:
    $ 38.49万
  • 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
  • 批准号:
    8688869
  • 财政年份:
    2012
  • 资助金额:
    $ 38.49万
  • 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
  • 批准号:
    8964568
  • 财政年份:
    2012
  • 资助金额:
    $ 38.49万
  • 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
  • 批准号:
    8373964
  • 财政年份:
    2012
  • 资助金额:
    $ 38.49万
  • 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
  • 批准号:
    8518211
  • 财政年份:
    2012
  • 资助金额:
    $ 38.49万
  • 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
  • 批准号:
    9246415
  • 财政年份:
    2012
  • 资助金额:
    $ 38.49万
  • 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
  • 批准号:
    7780861
  • 财政年份:
    2011
  • 资助金额:
    $ 38.49万
  • 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
  • 批准号:
    8725660
  • 财政年份:
    2011
  • 资助金额:
    $ 38.49万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 38.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了