Targeted microcarrier design and optimization
靶向微载体设计和优化
基本信息
- 批准号:7793603
- 负责人:
- 金额:$ 35.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAntibodiesArteriesBindingBloodBlood CirculationBlood VesselsBlood flowCell Culture TechniquesCell membraneCell modelCell surfaceCellsCellular MorphologyCellular StressCharacteristicsClinicalComplexComputer SimulationCouplingDiffusionDiseaseDisorder by SiteDoseDrug CarriersDrug Delivery SystemsEndothelial CellsEventExerciseExperimental DesignsExperimental ModelsGlycocalyxIn VitroInstitutesIntercellular adhesion molecule 1KineticsLateralLeadLengthLifeLigand BindingLigandsMechanicsMembraneMethodsModelingMotionNormal tissue morphologyParticle SizePathologyPennsylvaniaPharmaceutical PreparationsPhysical environmentPhysiologicalPolystyrenesProcessPropertyProtocols documentationRegulationResearch PersonnelRheologySiteStreamStructureSurfaceSystemTechnologyTestingTherapeuticTimeTissuesToxic effectTranslationsTreatment EfficacyTubeUniversitiesVeinsWorkbaseblood rheologycell fixingcell motilitydensitydesignengineering designimprovedin vivomulti-scale modelingnanocarriernanoscaleparticleprophylacticprototypereceptorreceptor densityreceptor expressionresearch studyresponseshear stresssuccesstargeted deliverytechnology developmenttherapeutic targettranslational medicine
项目摘要
DESCRIPTION (provided by applicant): A strategic approach to improve the treatment of many diseases is to package a drug into carrier particles and then target that drug carrier for bloodstream delivery directly to the diseased tissue. Benefits of this approach include the possibility of an increase in the dose of the drug reaching diseased tissue (enhanced therapeutic efficacy) and a concomitant decrease in the dose of drug reaching normal tissue (reduced toxicity). Success of this approach relies in part on the development of technologies and clinical methods for injecting functionalized, targeted drug carriers into the blood stream close to the disease tissue. Success is directly dependent on the design and manufacture of carrier particles that have specific features such as particle size and surface coverage with binding molecules specific to the diseases being treated that lead to the desired, and necessary, initial event: binding of the carrier particle to endothelial cells in blood vessels within the diseased tissue. The complex interplay between targeted nanocarrier motion in flow, biomolecular receptor- ligand interactions governing specific binding, and thermal/transport dynamics of receptors on the cell membrane, is inherently a multiscale problem. The physical environment for binding ultimately defines the efficacy of nanocarrier arrest on the target cell. The nanocarrier binding and arrest are influenced by hydrodynamic forces resulting from blood flow, expression-levels of specific target determinants on the cell surface, their lateral diffusion on the membrane, the presence or absence of a glycocalyx, and membrane mobility. We hypothesize that experimental and design parameters such as receptor density on nanocarriers, carrier size, and binding response to flow characteristics such as shear stress levels can be optimized for enhancing the targeting the nanocarriers to specific (stressed) cells. To test this hypothesis, we propose four specific aims: 1) develop a spatially resolved stochastic multiscale model for predicting the energetic and kinetics of targeted spherical nanocarriers binding to endothelial cells; 2) experimentally quantify the kinetics of binding for ligand functionalized nanocarriers of varying size to fixed cells under static and shear conditions; 3) experimentally quantify the kinetics of binding for ligand functionalized nanocarriers of varying size to live cells under static and shear conditions and 4) extend the model in Aim 1 to a) include additional effects on binding due to membrane mobility, lateral diffusion of receptors and the mechano/hydrodynamic barrier posed by the glycocalyx in live cells; b) include effects of RBC-nanocarrier interactions and non-Newtonian rheology. We will develop a synergistic modeling and experimental platform for accessing and bridging the multiple length and time scales relevant for vascular delivery of targeted nanocarriers. Our objectives of quantitatively characterizing and predicting the transient nanoscale binding mechanics and dynamics for spherical nanocarrier binding to fixed and live endothelial cells under shear flow as a function of the various experimentally tunable parameters will lead to improvements in therapeutics for many diseases. A strategic approach to improve the treatment of many diseases is to package a drug into carrier particles and then target that drug carrier for bloodstream delivery directly to the diseased tissue. We will develop a synergistic experimental and computational platform addressing bloodstream delivery of targeted nanocarriers. This work to characterize quantitatively and predict computationally the binding mechanics and dynamics for nanocarrier binding to endothelial cells will lead to improvements in therapeutics for many diseases.
描述(由申请人提供):改善许多疾病治疗的策略性方法是将药物包装到载体颗粒中,然后将该药物载体靶向用于血流递送的药物直接递送到患病组织。这种方法的益处包括可能增加到达患病组织的药物剂量(增强的治疗功效)和伴随减少到达正常组织的药物剂量(降低的毒性)。这种方法的成功部分依赖于将功能化的靶向药物载体注射到疾病组织附近的血流中的技术和临床方法的发展。成功直接取决于载体颗粒的设计和制造,所述载体颗粒具有特定的特征,例如颗粒尺寸和对所治疗的疾病具有特异性的结合分子的表面覆盖度,其导致期望的和必要的初始事件:载体颗粒与患病组织内血管中的内皮细胞结合。流动中的靶向纳米载体运动、控制特异性结合的生物分子受体-配体相互作用和细胞膜上受体的热/运输动力学之间的复杂相互作用本质上是多尺度问题。结合的物理环境最终决定了纳米载体对靶细胞的阻滞效果。纳米载体的结合和阻滞受血流产生的流体动力学、细胞表面上特定靶决定簇的表达水平、它们在膜上的横向扩散、糖萼的存在或不存在以及膜流动性的影响。我们假设,实验和设计参数,如受体密度的纳米载体,载体的大小,和结合响应的流动特性,如剪切应力水平可以优化,以提高针对特定的(应激)细胞的纳米载体。为了验证这一假设,我们提出了四个具体的目标:1)建立一个空间分辨的随机多尺度模型,用于预测靶向球形纳米载体与内皮细胞结合的能量和动力学; 2)实验量化静态和剪切条件下不同尺寸的配体功能化纳米载体与固定细胞结合的动力学; 3)在静态和剪切条件下实验性地量化不同尺寸的配体官能化纳米载体与活细胞结合的动力学,以及4)将目标1中的模型扩展到a)包括由于膜迁移率而对结合的额外影响,受体的横向扩散和由活细胞中的糖萼构成的机械/流体动力学屏障; B)包括RBC-纳米载体相互作用和非牛顿流变学的影响。我们将开发一个协同建模和实验平台,用于访问和桥接与靶向纳米载体的血管递送相关的多个长度和时间尺度。我们的目标是定量表征和预测瞬时纳米级结合力学和动力学的球形纳米载体结合到固定和活的内皮细胞在剪切流作为各种实验可调参数的函数,将导致许多疾病的治疗方法的改进。改善许多疾病的治疗的战略方法是将药物包装到载体颗粒中,然后将该药物载体靶向用于血流递送直接到达患病组织。我们将开发一个协同的实验和计算平台,解决靶向纳米载体的血流输送问题。这项定量表征和计算预测纳米载体与内皮细胞结合的结合力学和动力学的工作将导致许多疾病的治疗方法的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M ECKMANN其他文献
DAVID M ECKMANN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M ECKMANN', 18)}}的其他基金
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
9067407 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
9476336 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
8795021 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Physician Postdoctoral Research Training in Perioperative Medicine (PPRTPM)
围手术期医学医师博士后研究培训 (PPRTPM)
- 批准号:
9282740 - 财政年份:2015
- 资助金额:
$ 35.08万 - 项目类别:
Bridging multiple scales in modeling targeted drug nanocarrier delivery
在靶向药物纳米载体输送建模中桥接多个尺度
- 批准号:
8554530 - 财政年份:2013
- 资助金额:
$ 35.08万 - 项目类别:
Bridging multiple scales in modeling targeted drug nanocarrier delivery
在靶向药物纳米载体输送建模中桥接多个尺度
- 批准号:
8723200 - 财政年份:2013
- 资助金额:
$ 35.08万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.08万 - 项目类别:
Research Grant














{{item.name}}会员




