Brain Stimulation- aided Stroke Rehabilitation: Neural Mechanisms of Recovery

脑刺激辅助中风康复:恢复的神经机制

基本信息

  • 批准号:
    8165770
  • 负责人:
  • 金额:
    $ 8.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-10 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The candidate's training, thus far, has involved two major themes, one as a rehabilitation scientist in the field of stroke recovery and the other as a neuroscientist with interest in revealing and modulating the underlying mechanisms. The candidate's long-term goal is to become a successful, independent clinical neuro-rehabilitation scientist specializing in customizing interventions to patient-specific mechanisms of disease and recovery. Her short term goals, proposed in this application, will further her training to help advance her towards her long term goal. As a physical therapist intrigued by the mechanisms and treatment of residual deficits of paretic upper limb in stroke, the candidate decided to pursue PhD in Rehabilitation Science with a focus in Neuroscience. She found, using functional Magnetic Resonance Imaging (fMRI), that skill learning-based rehabilitation enhanced recovery of the paretic upper limb by promoting neuroplasticity in motor cortices. In her post-doctoral fellowship, she became interested in directly modulating plasticity in the surviving cortices using non-invasive brain stimulation (Transcranial Magnetic Stimulation, TMS, and Transcranial Direct Current Stimulation, tDCS) to enhance efficacy of rehabilitation. In a small pilot study, the candidate confirmed the synergistic advantage of combining tDCS of the surviving higher visual areas with concurrent visual rehabilitation in post-stroke visual recovery. These findings engendered her interest in translating this paradigm to alleviate deficits of the paretic upper limb. The candidate proposes to apply this paradigm to improve the effectiveness of a novel, clinical rehabilitative method, called Constraint-Induced Movement Therapy (CIMT), which alleviates residual deficits by promoting adaptive plasticity in the cortical networks, but has poor clinical utility due to its labor-intensive protocols and inadequate gains. By combining cortical stimulation during CIMT, the candidate premises that its efficiency and efficacy could be improved. Unlike animal and preclinical studies, however, two clinical trials failed to support the efficacy of combining motor cortical stimulation with rehabilitation of the paretic upper limb. In a critical appraisal, the candidate concluded that discrepancies stem from over-reliance on the surviving motor cortex (M1) as a target for stimulation, which may have limited viability in humans, and lack of understanding of mechanisms of recovery. The current proposal will address these gaps in clinical research by targeting stimulation of a higher motor area, Premotor Cortex (PMC), which is remote, yet well connected to M1, has independent cortico-spinal tracts, and demonstrates adaptive plasticity with rehabilitation. Further, the candidate proposes to explore comprehensive structural and functional neural mechanisms of recovery using Diffusion Tensor Imaging (integrity of corticospinal tracts), TMS (functioning of corticospinal tracts), fMRI (balance between bilateral motor cortices), fcMRI (functional connectivity between multiple cortices) and coupling between cortical drive and paretic muscle (EEG-EMG). The unique yet complementary nature of these multi-modal techniques will increase the prediction of functional potential of recovery and reveal a complete picture of neuro-motor recovery in stroke. Thus, the research goals for the proposal are: 1) to compare the effectiveness of tDCS, delivered to surviving PMC, plus CIMT versus CIMT delivered alone in improving function of the paretic upper limb in chronic stroke. 2) To explore and contrast neural mechanisms of recovery underlying tDCS plus CIMT versus CIMT alone using multimodal structural and functional imaging from baseline to post-rehabilitation. Thirty patients will be randomly assigned to one of two groups and training will last 30 min, 3 days/week for 5 weeks. Although the candidate has gained important skills in her previous training, such as conducting laboratory-based rehabilitation studies, use of fMRI, TMS and tDCS, she requires additional training to achieve the research aims. Thus, her short-term goals are: 1) to train in Clinical Rehabilitative Research to understand clinical trial design and analyses through instruction, and research with mentors and collaborators to accomplish research aim 1 and 2) to train in Multimodal Structural and Functional Neuroimaging to learn DTI, fcMRI and EEG-EMG analyses, their interaction with fMRI and TMS, and lesions to conduct research aim 2. The candidate's short-term goals will provide her experience in conducting randomized clinical trials to create an evidence-base for neuro-rehabilitation. Further, by revealing mechanisms of recovery, an algorithm for patient-specific interventions could be devised, which will advance her towards her long-term goal. Her current position at the Cleveland Clinic provides the required support and resources for her aims. Her position as a Project Scientist offers 100% protected time for research. Collaborations across institutes, i.e., Lerner Research - Biomedical Engineering, Physical Medicine & Rehabilitation, Neurological and Imaging Institutes have created an ideal, multi-disciplinary team of established mentors and collaborators to further her learning. The mentoring team includes 1) an eminent neurophysiologist who will train the candidate in EEG-EMG, 2) a leading functional and stereotaxic neurosurgeon with clinical research expertise in applying brain stimulation who will train her to identify PMC targets in stroke brains, 3) a renowned imaging physicist with experience in developing the latest analyses for DTI and fcMRI and 4) a neuroradiologist who has developed sophisticated imaging analyses to address lesion effects. PUBLIC HEALTH RELEVANCE: The current project will develop a new paradigm of promoting recovery of function in stroke, which improves efficiency and effectiveness of current methods of rehabilitation. The paradigm is clinically-relevant as it will improve the therapeutic utility of rehabilitation, thereby reducing the excessive healthcare costs associated with stroke.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ela B Plow其他文献

Rehabilitation drives post-stroke motor recovery
康复推动脑卒中后运动恢复
  • DOI:
    10.1016/s1474-4422(25)00100-0
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    45.500
  • 作者:
    Teresa J Kimberley;Ela B Plow
  • 通讯作者:
    Ela B Plow

Ela B Plow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ela B Plow', 18)}}的其他基金

Contralaterally Controlled FES Combined with Brain Stimulation for Severe Upper limb Hemiplegia
对侧控制FES联合脑刺激治疗重度上肢偏瘫
  • 批准号:
    10642652
  • 财政年份:
    2019
  • 资助金额:
    $ 8.84万
  • 项目类别:
Contralaterally Controlled FES Combined with Brain Stimulation for Severe Upper limb Hemiplegia
对侧控制FES联合脑刺激治疗重度上肢偏瘫
  • 批准号:
    9922955
  • 财政年份:
    2019
  • 资助金额:
    $ 8.84万
  • 项目类别:
Brain Stimulation- aided Stroke Rehabilitation: Neural Mechanisms of Recovery
脑刺激辅助中风康复:恢复的神经机制
  • 批准号:
    8474809
  • 财政年份:
    2011
  • 资助金额:
    $ 8.84万
  • 项目类别:
Brain Stimulation- aided Stroke Rehabilitation: Neural Mechanisms of Recovery
脑刺激辅助中风康复:恢复的神经机制
  • 批准号:
    8327576
  • 财政年份:
    2011
  • 资助金额:
    $ 8.84万
  • 项目类别:
Brain Stimulation- aided Stroke Rehabilitation: Neural Mechanisms of Recovery
脑刺激辅助中风康复:恢复的神经机制
  • 批准号:
    8878831
  • 财政年份:
    2011
  • 资助金额:
    $ 8.84万
  • 项目类别:
Brain Stimulation- aided Stroke Rehabilitation: Neural Mechanisms of Recovery
脑刺激辅助中风康复:恢复的神经机制
  • 批准号:
    8686015
  • 财政年份:
    2011
  • 资助金额:
    $ 8.84万
  • 项目类别:
Effects of Mental Training on Voluntary Muscle Strength in Aging
心理训练对衰老过程中随意肌力量的影响
  • 批准号:
    8015321
  • 财政年份:
    1997
  • 资助金额:
    $ 8.84万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 8.84万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了