Nitric Oxide Deficiency in Hypertensive Nephropathies
高血压肾病中的一氧化氮缺乏
基本信息
- 批准号:8141917
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcuteAfrican AmericanAngiotensin IIAnimalsAreaBiological ModelsBlood PressureBlood VesselsChronicChronic Kidney FailureClinicalCollaborationsDevelopmentDietary InterventionDysbarismEnd stage renal failureEndotheliumEnvironmental Risk FactorEtiologyEvolutionExhibitsExperimental ModelsExposure toFunctional disorderFundingGenetic RiskGlomerular CapillaryGlomerular Filtration RateGoalsHumanHypertensionHypoxiaInbred MouseIndividualInjuryIschemiaKidneyKidney DiseasesKidney FailureLeadMeasuresMediatingMediator of activation proteinMedicineMentorsMesenteric ArteriesMesenteryMicropunctureModelingMusNitratesNitric OxideNitritesOther GeneticsOxidative StressPathogenesisPathologyPathway interactionsPatientsPatternPopulationPredispositionPrevalencePreventionRattusRegulationRelative (related person)Relative RisksRenal HypertensionRenal functionReportingResearchRiskRisk FactorsRiversRoleSeveritiesSprague-Dawley RatsTechniquesTimeTraining ActivityUnited StatesUniversitiesVariantVasodilationVeteransarteriolecareercareer developmentclinically relevantclinically significantdietary nitratehemodynamicsimprovedindexinginsightkidney vascular structurenovelosteopontinpressurerenal hypoxiaresearch studyresponsetempoltetrahydrobiopterinvasoconstriction
项目摘要
DESCRIPTION (provided by applicant):
Hypertension is the second leading primary cause of end-stage renal disease; however, considerable variation exists with respect to the relative risk of hypertensive-induced renal damage in the veteran population. The factors that alter the susceptibility to hypertensive renal injury as well as the underlying mechanisms remain poorly understood. One of the difficulties in investigating the mechanisms that contribute to hypertensive renal injury is the wide spectrum of pathology observed in hypertensive patients with kidney damage. The two major pathophysiologic mechanisms thought to contribute to the pathogenesis and progression of hypertensive renal injury include local exposure to excessive pressures with resulting barotrauma and chronic ischemia with resulting hypoxia. While both mechanisms will contribute to the progression of renal injury, the relative contribution of barotrauma and ischemia to the observed injury likely differs among hypertensive individuals depending on the underlying pathophysiologic context and the presence of additional genetic or environmental risk factors. One such risk factor that is thought to alter the susceptibility to hypertensive renal injury is endothelial dysfunction with reduced levels of nitric oxide (NO). Reduced NO levels have been reported in human populations susceptible to an accelerated progression of hypertensive renal injury, such as African- Americans and individuals with chronic kidney disease. Yet, the role of NO availability on the relative contribution of BP dependent and independent pathways of renal injury, its effects on pathways of barotrauma vs. ischemia induced injury, and the underlying mechanisms remain poorly understood. In the studies proposed in this career development application, we will utilize groups of rats and mice with differences in NO availability as a broad model system to investigate the mechanisms by which reduced NO levels alter the susceptibility to hypertensive injury. We will perform these studies in two models of hypertension in which the pathogenesis of renal injury is thought to be predominantly mediated via barotrauma vs. ischemia pathways. These studies are of clinical significance and should lead to very novel insights regarding the mechanisms by which NO availability alters the susceptibility barotrauma and ischemia mediated pathways of renal injury during the pathogenesis and progression of hypertension. Studies in Aim 1 will focus on the temporal evolution of renal injury, several indices of NO availability, oxidative stress, and purported cellular mediators of injury (i.e., hypoxia, osteopontin, etc.). Dietary interventions will be used to alter the level of NO availability to determine the importance of NO in ameliorating renal injury in various hypertensive states. Studies in Aim 2 are focused on the potential BP dependent and independent mechanisms by which reduced NO availability may enhance the susceptibility to hypertensive renal injury. These studies will focus on the pressor and nonpressor effects of NO availability on the regulation of renal hemodynamics, renal function, and renal oxygenation levels during the pathogenesis and progression of hypertensive renal injury. The studies in Aim 3 will investigate the relative contribution of endothelial dependent and independent pathways in isolated mesenteric arteries to improve our understanding of the mechanisms contributing to the differences in NO availability between the experimental animals. In addition to the novel and clinically relevant set of research experiments, there are numerous informal and formal training activities that should prepare the applicant for an independent career in academic medicine. Furthermore, the proposed studies should also lead to several novel and relevant areas of research, which are independent of his mentoring group, which the applicant can pursue for independent funding.
PUBLIC HEALTH RELEVANCE:
Hypertension is the second leading cause of kidney failure. Some hypertensive populations, such as individuals of African-American heritage or those with underlying chronic kidney disease, have a much greater risk of progressing to kidney failure. This pattern is also observed in the veteran population. The goal of this project is to determine the potential mechanisms by which some risk factors, commonly found in individuals who are prone to develop chronic kidney disease, increase the susceptibility to hypertensive injury. These studies may lead to new treatments for the prevention of chronic kidney disease in the veteran population.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron James Polichnowski其他文献
Aaron James Polichnowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron James Polichnowski', 18)}}的其他基金
Hemodynamic mechanisms of impaired recovery and progression of renal disease following AKI in preexisting CKD states
既往 CKD 状态下 AKI 后肾病恢复受损和进展的血流动力学机制
- 批准号:
10046795 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Nitric Oxide Deficiency in Hypertensive Nephropathies
高血压肾病中的一氧化氮缺乏
- 批准号:
8698278 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Nitric Oxide Deficiency in Hypertensive Nephropathies
高血压肾病中的一氧化氮缺乏
- 批准号:
8402118 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Nitric Oxide Deficiency in Hypertensive Nephropathies
高血压肾病中的一氧化氮缺乏
- 批准号:
8263684 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists