Microfluidic patch clamp chips for multi-unit, high-throughput recordings

用于多单元、高通量记录的微流控膜片钳芯片

基本信息

  • 批准号:
    7851321
  • 负责人:
  • 金额:
    $ 30.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-13 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Ion channels play key roles in the physiology of neuronal and non-neuronal cells, in information processing in the nervous system, in brain development, and in a broad spectrum of neurological and non-neurological disorders, such as cardiovascular disease and infertility conditions. To this day, the gold standard for studying ion channels is the patch clamp technique, a laborious technique based on carefully sealing the aperture of a pipette against the cell membrane (the gigaohm seal ). The technique is not easily amenable to automation, so the low throughput of pipette-based recordings is a serious bottleneck for pharmacological screening of ion channel-targeting compounds. Furthermore, recording from >2-3 cells simultaneously is not possible with pipettes; as a result, investigations of communication in complex mature and developing neural networks are limited to extracellular recordings or optical imaging of intracellular calcium activity, both of which are limited in their ability to provide detailed information about intracellular electrical activity. Several groups have recently reported the successful operation of various designs of patch clamp chips, all based on positioning the cell against a microfabricated aperture. We have recently developed a microfluidic patch clamp chip that allows for obtaining gigaohm seals with yields comparable to or surpassing those achievable with a pipette; the performance was evaluated on single rat basophilic leukemia cells during whole-cell recordings of the inward- rectifying potassium ion channel. Here we propose to extend our recent work to recordings from cultured embryonic cortical slices using a novel slice preparation that has a clean layer of cells on the surface of the slice. With the multi-unit patch clamp chip we will investigate the propagation of neuronal signals across developing cortical networks. PUBLIC HEALTH RELEVANCE The successful completion of this project could reveal neuronal communication mechanisms that underlie the propagation of activity waves seen in development (as part of the normal developmental program) as well as in epilepsy. Furthermore, the same technology would enable low-cost screening of ion channel-targeting compounds (which constitute ~25% of drugs) for their effects on single ion channel currents (approximately 50% of safety-related withdrawals of drugs from the market are due to undesired side effects on ion channels, so the FDA now recommends that all drug candidates usually pools of >10,000 compounds be patch clamp-tested for their effects on the hERG channel).Ion channels play key roles in all known brain functions. Using patch clamp chips, it is now possible to monitor the ion channel activity of large numbers of single dissociate cells (but not of brain slices). We propose to develop a patch clamp chip design for monitoring multiple cells on the surface of brain slices. We will use the device to investigate the propagation of neuronal signals across developing cortical networks.
描述(由申请人提供):离子通道在神经元和非神经元细胞的生理学、神经系统的信息处理、脑发育以及广泛的神经和非神经疾病(如心血管疾病和不孕症)中发挥关键作用。 直到今天,研究离子通道的黄金标准是膜片钳技术,这是一种费力的技术,需要小心地将移液管的孔径与细胞膜密封(千兆欧姆密封)。 该技术不易于自动化,因此基于移液管的记录的低通量是离子通道靶向化合物的药理学筛选的严重瓶颈。 此外,用移液管同时记录>2-3个细胞是不可能的;因此,对复杂的成熟和发育中的神经网络中的通信的研究限于细胞外记录或细胞内钙活动的光学成像,这两者在提供关于细胞内电活动的详细信息的能力方面都是有限的。 最近有几个研究小组报道了各种设计的膜片钳芯片的成功操作,所有这些都是基于将细胞定位在一个微制造的孔上。 我们最近开发了一种微流控膜片钳芯片,可以获得千兆欧密封,其产量与移液管相当或超过移液管可实现的产量;在内向整流钾离子通道的全细胞记录期间,对单个大鼠嗜碱性白血病细胞进行了性能评估。 在这里,我们建议延长我们最近的工作,从培养的胚胎皮层切片使用一种新的切片制备,有一个干净的细胞层的切片表面上的记录。 利用多单元膜片钳芯片,我们将研究神经元信号在发育中的皮层网络中的传播。 该项目的成功完成可以揭示神经元通信机制,这些机制是发育(作为正常发育程序的一部分)以及癫痫中活动波传播的基础。 此外,相同的技术将使得能够低成本地筛选离子通道靶向化合物(其构成约25%的药物)对单个离子通道电流的作用(大约50%的与安全性相关的药物从市场撤回是由于对离子通道的不期望的副作用,因此FDA现在建议所有候选药物 通常含有> 10,000种化合物 离子通道在所有已知的脑功能中起关键作用。 使用膜片钳芯片,现在可以监测大量单个解离细胞(但不是脑切片)的离子通道活性。 我们建议开发一种膜片钳芯片设计,用于监测脑切片表面的多个细胞。 我们将使用该设备来研究神经元信号在发育中的皮层网络中的传播。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A microfluidic microelectrode array for simultaneous electrophysiology, chemical stimulation, and imaging of brain slices.
  • DOI:
    10.1039/c2lc40826k
  • 发表时间:
    2013-02-21
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Scott A;Weir K;Easton C;Huynh W;Moody WJ;Folch A
  • 通讯作者:
    Folch A
Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture.
  • DOI:
    10.1063/1.4883075
  • 发表时间:
    2014-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    C. Sip;A. Folch
  • 通讯作者:
    C. Sip;A. Folch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALBERT FOLCH其他文献

ALBERT FOLCH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALBERT FOLCH', 18)}}的其他基金

Multiplexed drug testing of micro-dissected tumors using a microfluidic platform with integrated electrochemical aptasensors
使用具有集成电化学适体传感器的微流体平台对显微解剖肿瘤进行多重药物测试
  • 批准号:
    10669408
  • 财政年份:
    2023
  • 资助金额:
    $ 30.25万
  • 项目类别:
Multi-material stereolithographic 3D-printing for prototyping Tissue Chips
用于制作组织芯片原型的多材料立体光刻 3D 打印
  • 批准号:
    10265548
  • 财政年份:
    2020
  • 资助金额:
    $ 30.25万
  • 项目类别:
High-content functional cancer drug testing on micro-cuboidal tumor dissections
微立方体肿瘤解剖的高内涵功能性癌症药物测试
  • 批准号:
    10025143
  • 财政年份:
    2020
  • 资助金额:
    $ 30.25万
  • 项目类别:
Microfluidic Device to Profile Chemosensitivity in Glioma Slice Cultures
用于分析神经胶质瘤切片培养物化学敏感性的微流体装置
  • 批准号:
    9340082
  • 财政年份:
    2014
  • 资助金额:
    $ 30.25万
  • 项目类别:
Microfluidic Device to Profile Chemosensitivity in Glioma Slice Cultures
用于分析神经胶质瘤切片培养物化学敏感性的微流体装置
  • 批准号:
    8759557
  • 财政年份:
    2014
  • 资助金额:
    $ 30.25万
  • 项目类别:
Interrogating the response of the tumor microenvironment to combination immunotherapy using a microfluidic platform
使用微流控平台探究肿瘤微环境对联合免疫疗法的反应
  • 批准号:
    10397985
  • 财政年份:
    2014
  • 资助金额:
    $ 30.25万
  • 项目类别:
Interrogating the response of the tumor microenvironment to combination immunotherapy using a microfluidic platform
使用微流控平台探究肿瘤微环境对联合免疫疗法的反应
  • 批准号:
    10633090
  • 财政年份:
    2014
  • 资助金额:
    $ 30.25万
  • 项目类别:
Multiplexed Microfluidic Gradients for Axon Guidance
用于轴突引导的多重微流体梯度
  • 批准号:
    8667513
  • 财政年份:
    2011
  • 资助金额:
    $ 30.25万
  • 项目类别:
Multiplexed Microfluidic Gradients for Axon Guidance
用于轴突引导的多重微流体梯度
  • 批准号:
    8470722
  • 财政年份:
    2011
  • 资助金额:
    $ 30.25万
  • 项目类别:
Multiplexed Microfluidic Gradients for Axon Guidance
用于轴突引导的多重微流体梯度
  • 批准号:
    8109748
  • 财政年份:
    2011
  • 资助金额:
    $ 30.25万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 30.25万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了