Microscale control of stem cell signaling using cell patterning and perfusion
使用细胞模式和灌注对干细胞信号传导进行微尺度控制
基本信息
- 批准号:7751887
- 负责人:
- 金额:$ 32.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAffectBehaviorBiological AssayCell CommunicationCell CountCell Culture TechniquesCell DensityCellsCellular biologyCommunication MethodsDevelopmentDiseaseFutureGoalsGrantHealthHumanIn VitroMediatingMedicineMicrofluidicsModelingMusNeuronsParacrine CommunicationPatternPerfusionPhenotypeProcessProliferatingResearchResearch PersonnelRoleSignal TransductionStem cellsSystemTechniquesTechnologyTherapeuticTissuesautocrineclinically significantdensityembryonic stem cellextracellularfluid flowhuman embryonic stem cellintercellular communicationinterestmodel developmentnew technologyself-renewalstem cell biology
项目摘要
DESCRIPTION (provided by applicant): Controlling cell-cell signaling at the microscale has led directly to advances in fundamental cell biology and re-generative medicine. Our goal is to develop technology to modulate cell signaling in vitro, specifically focusing on embryonic stem cells. While conventional techniques exist for probing intercellular communication, these methods provide incomplete control over the cell-culture microenvironment. A host of new technologies, such as cell patterning and microfluidic culture, have resulted in new ways to study cell- cell interactions. Despite the achievements of these technologies, limitations arise as we try to apply them to stem cell biology. In particular, cell-patterning techniques typically require patterning the substrate, which is a hindrance when studying proliferating stem cells. While microfluidic perfusion culture has been postulated to affect autocrine/paracrine signaling, this has not been rigorously demonstrated, and thus the full potential of microfluidic perfusion for modulating diffusible signaling has not been realized. We believe that addressing these limitations will enable new ways of studying not only stem cell signaling, but signal transduction in other cell systems as well. We are particularly interested in stem cells because they are powerful models for developmental and disease processes, as well as components for current and future therapeutics. To this end, we have developed two complementary technologies to study these cells: a new way to pattern cells and a microfluidic perfusion system. Our approach is to develop microtechnology that can (1) uses fluid flow in microfluidic perfusion chambers to modulate diffusible signaling, and (2) bio-flipchip cell patterning to place progenitor cells in defined arrangements, modulating diffusible and juxtacrine signaling. We will use these technologies to study mouse embryonic stem cell self-renewal and differentiation to neurons, and human embryonic stem cell self- renewal. Our specific aims are to (1) use microfluidic perfusion arrays to modulate mouse embryonic stem cell self-renewal and differentiation by controlling cell-cell diffusible signaling, (2) study direct and diffusible cell-cell interactions during passaging in mouse embryonic stem cell self-renewal using bio-flipchips, and (3) apply both technologies to studying human embryonic stem cell self-renewal. ;; The relevance of this project to human health is in deciphering the mysteries of stem cell biology in order to use stem cells as therapeutics. Before stem cells can be used to treat disease, we must understand how to propogate them in culture and use them to create various tissues. Our technology provides a new window into stem cell biology that will help determine new ways to control their behavior.
描述(由申请人提供):在微观尺度上控制细胞-细胞信号传导直接导致了基础细胞生物学和再生医学的进步。我们的目标是开发体外调节细胞信号的技术,特别是专注于胚胎干细胞。虽然存在用于探测细胞间通信的常规技术,但这些方法提供了对细胞培养微环境的不完全控制。一系列新技术,如细胞图案化和微流体培养,为研究细胞-细胞相互作用提供了新的方法。尽管这些技术取得了成就,但当我们试图将其应用于干细胞生物学时,局限性就会出现。特别地,细胞图案化技术通常需要图案化基底,这在研究增殖干细胞时是一个障碍。虽然微流体灌注培养已经被假定影响自分泌/旁分泌信号传导,但这尚未得到严格证明,因此微流体灌注用于调节扩散信号传导的全部潜力尚未实现。我们相信,解决这些限制将使新的方法,不仅研究干细胞信号,但在其他细胞系统的信号转导以及。我们对干细胞特别感兴趣,因为它们是发育和疾病过程的强大模型,也是当前和未来治疗的组成部分。为此,我们开发了两种互补技术来研究这些细胞:一种新的细胞模式和微流体灌注系统。我们的方法是开发微技术,可以(1)在微流体灌注室中使用流体流动来调节扩散信号,以及(2)生物倒装芯片细胞图案化以将祖细胞放置在定义的排列中,调节扩散和非细胞信号。我们将利用这些技术来研究小鼠胚胎干细胞的自我更新和向神经元的分化,以及人类胚胎干细胞的自我更新。我们的具体目标是(1)使用微流控灌注阵列来调节小鼠胚胎干细胞的自我更新和分化,通过控制细胞-细胞扩散信号,(2)研究直接和扩散的细胞-细胞之间的相互作用,在小鼠胚胎干细胞的自我更新传代过程中使用生物倒装芯片,和(3)应用这两种技术来研究人类胚胎干细胞的自我更新。该项目与人类健康的相关性在于破译干细胞生物学的奥秘,以便将干细胞用作治疗药物。在干细胞被用于治疗疾病之前,我们必须了解如何在培养中繁殖它们,并利用它们来创造各种组织。我们的技术为干细胞生物学提供了一个新的窗口,这将有助于确定控制其行为的新方法。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matrix remodeling maintains embryonic stem cell self-renewal by activating Stat3.
- DOI:10.1002/stem.1360
- 发表时间:2013-06
- 期刊:
- 影响因子:5.2
- 作者:Przybyla, Laralynne M.;Theunissen, Thorold W.;Jaenisch, Rudolf;Voldman, Joel
- 通讯作者:Voldman, Joel
Advancing stem cell research with microtechnologies: opportunities and challenges.
- DOI:10.1039/c0ib00004c
- 发表时间:2010-08
- 期刊:
- 影响因子:0
- 作者:Y. Toh;K. Blagović;J. Voldman
- 通讯作者:Y. Toh;K. Blagović;J. Voldman
Probing embryonic stem cell autocrine and paracrine signaling using microfluidics.
- DOI:10.1146/annurev-anchem-062011-143122
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Przybyla L;Voldman J
- 通讯作者:Voldman J
Patterning of embryonic stem cells using the bio flip chip.
使用生物倒装芯片对胚胎干细胞进行图案化。
- DOI:10.3791/318
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Mittal,Nikhil;Flavin,Stephanie;Voldman,Joel
- 通讯作者:Voldman,Joel
Nonmitogenic survival-enhancing autocrine factors including cyclophilin A contribute to density-dependent mouse embryonic stem cell growth.
- DOI:10.1016/j.scr.2010.10.001
- 发表时间:2011-03
- 期刊:
- 影响因子:1.2
- 作者:Mittal N;Voldman J
- 通讯作者:Voldman J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Voldman其他文献
Joel Voldman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Voldman', 18)}}的其他基金
A High-Throughput Open-Well System for Engineering Neurovascular Units
用于工程神经血管单元的高通量开孔系统
- 批准号:
10303333 - 财政年份:2021
- 资助金额:
$ 32.93万 - 项目类别:
Cell-based sensors for measuring impact of microsystems on cell physiology
基于细胞的传感器,用于测量微系统对细胞生理学的影响
- 批准号:
8209024 - 财政年份:2010
- 资助金额:
$ 32.93万 - 项目类别:
Cell-based sensors for measuring impact of microsystems on cell physiology
基于细胞的传感器,用于测量微系统对细胞生理学的影响
- 批准号:
8010388 - 财政年份:2010
- 资助金额:
$ 32.93万 - 项目类别:
Cell-based sensors for measuring impact of microsystems on cell physiology
基于细胞的传感器,用于测量微系统对细胞生理学的影响
- 批准号:
7776528 - 财政年份:2010
- 资助金额:
$ 32.93万 - 项目类别:
Cell-based sensors for measuring impact of microsystems on cell physiology
基于细胞的传感器,用于测量微系统对细胞生理学的影响
- 批准号:
8409794 - 财政年份:2010
- 资助金额:
$ 32.93万 - 项目类别:
Microfluidic-based high-efficiency cell fusion for studying nuclear reprogramming
基于微流控的高效细胞融合研究核重编程
- 批准号:
7678467 - 财政年份:2008
- 资助金额:
$ 32.93万 - 项目类别:
Microfluidic-based high-efficiency cell fusion for studying nuclear reprogramming
基于微流控的高效细胞融合研究核重编程
- 批准号:
7449496 - 财政年份:2008
- 资助金额:
$ 32.93万 - 项目类别:
Microscale control of stem cell signaling using cell patterning and perfusion
使用细胞模式和灌注对干细胞信号传导进行微尺度控制
- 批准号:
7362401 - 财政年份:2007
- 资助金额:
$ 32.93万 - 项目类别:
Microscale control of stem cell signaling using cell patterning and perfusion
使用细胞模式和灌注对干细胞信号传导进行微尺度控制
- 批准号:
7246370 - 财政年份:2007
- 资助金额:
$ 32.93万 - 项目类别:
Microscale control of stem cell signaling using cell patterning and perfusion
使用细胞模式和灌注对干细胞信号传导进行微尺度控制
- 批准号:
7568726 - 财政年份:2007
- 资助金额:
$ 32.93万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.93万 - 项目类别:
Research Grant