An Advanced Technology Flat-Panel Imager for Fluoroscopy

用于荧光检查的先进技术平板成像仪

基本信息

  • 批准号:
    7810684
  • 负责人:
  • 金额:
    $ 137.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2013-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Extensive research efforts since the 1980s have resulted in the practical introduction of active-matrix flat-panel imagers (AMFPIs) to numerous medical x-ray applications in this decade. These include \ imaging procedures involving cone beam computed tomography (CBCT). While AMFPIs offer many advantages compared to traditional film-screen and x-ray image intensifier systems (XRIIs), the technology nevertheless suffers from several significant limitations. AMFPI image quality degrades at low exposures so that, for example, it cannot match the image quality of XRIIs across the entire fluoroscopic exposure range. Secondly, AMFPIs are subject to image artifacts, originating from the trapping of charge in amorphous materials in the arrays. Such artifacts are particularly prominent when fluoroscopic images are acquired shortly after a large radiographic exposure - a phenomenon called ghosting. Finally, the maximum achievable frame rates of AMFPIs are restrictive. Research leading up to this proposal has identified an innovative, highly promising strategy for overcoming these limitations, involving substitution of the amorphous silicon thin-film transistors (a-Si:H TFTs), used in most conventional AMFPIs, with polycrystalline silicon (poly-Si) TFTs. This allows creation of considerably more sophisticated arrays with in-pixel amplifiers - referred to as an active pixel (AP) architecture. Coupled with the incorporation of novel a-Si:H photodiode structures that are compatible with these more complex pixel circuits, poly-Si AP arrays would overcome the various limitations listed above, while preserving the many favorable properties of conventional AMFPIs. The objectives of the research focus on the development of a series of increasingly higher performance, small area, prototype arrays that exhibit these desirable properties. The objectives are: (1) Development of prototypes with progressively better performance (higher detective quantum efficiency, lower charge trapping effects, higher frame rates) - involving iterative design, fabrication and evaluation of increasingly sophisticated AP prototypes. (2) Quantitative modeling (involving cascaded systems analysis and detailed circuit simulations) to provide guidance in array design and assist in prototype evaluation. (3) Detailed characterization of the properties of individual poly-Si TFTs and other test circuits to support the circuit simulation activities and to provide guidance in improving array performance through improvements to fabrication techniques. (4) Creation of the various tools (mathematical, software, firmware and hardware) required to accomplish the above objectives. The successful conclusion of this research will result in the creation of a technology that offers image quality limited only by the fundamental properties of X rays and x-ray converters, reduces artifacts and increases frame rates. Ultimately, this will improve image quality and/or reduce dose for fluoroscopic procedures, as well as facilitate advanced clinical applications including breast and chest tomosynthesis, and CBCT for breast and angiographic procedures. PUBLIC HEALTH RELEVANCE: The practical application of the novel x-ray imaging technology to be developed in the proposed research will offer significant enhancement of imaging capabilities, ultimately improving patient care in a wide variety of ways. For example, compared to existing x-ray technologies, the new technology will facilitate the realization of higher quality images at very low doses (helping to minimize dose to the patient in fluoroscopic procedures) and enable the visualization of smaller and/or lower contrast features (assisting in the identification of suspicious objects in mammographic examinations). Moreover, it is strongly anticipated that the new technology will enable advanced applications (involving tomosynthesis or cone beam computed tomography techniques for chest and breast imaging) that require rapid acquisition of multiple, high quality images at relatively low doses per image in order to produce three dimensional anatomical views.
描述(由申请人提供):自20世纪80年代以来,广泛的研究工作已经导致有源矩阵平板成像器(AMFPI)在这十年中实际引入到许多医疗X射线应用中。这些包括涉及锥形束计算机断层扫描(CBCT)的成像程序。虽然AMFPI与传统的胶片屏幕和X射线图像增强器系统(XRII)相比具有许多优点,但该技术仍然受到几个重大限制。AMFPI图像质量在低曝光时会降低,例如,在整个透视曝光范围内,它无法与XRII的图像质量相匹配。其次,AMFPI易受图像伪影的影响,这源于阵列中非晶材料中电荷的捕获。当在大量射线照相曝光后不久获取荧光透视图像时,这种伪影特别突出-这种现象称为重影。最后,AMFPI的最大可实现帧速率是有限制的。导致这一提议的研究已经确定了一种创新的、非常有前途的策略,用于克服这些限制,涉及用多晶硅(poly-Si)TFT替代在大多数常规AMFPI中使用的非晶硅薄膜晶体管(a-Si:H TFT)。这允许创建具有像素内放大器的相当复杂的阵列-称为有源像素(AP)架构。结合与这些更复杂的像素电路兼容的新型a-Si:H光电二极管结构,多晶硅AP阵列将克服上面列出的各种限制,同时保留传统AMFPI的许多有利特性。研究的目标集中在一系列性能越来越高,小面积,原型阵列,表现出这些理想的性能的发展。目标是:(1)开发性能逐步提高的原型(更高的量子探测效率、更低的电荷捕获效应、更高的帧速率)--涉及迭代设计、制造和评估日益复杂的AP原型。(2)定量建模(包括级联系统分析和详细的电路模拟),为阵列设计提供指导,并协助原型评估。(3)详细表征单个多晶硅TFT和其他测试电路的特性,以支持电路模拟活动,并通过改进制造技术为提高阵列性能提供指导。(4)创建实现上述目标所需的各种工具(数学,软件,固件和硬件)。这项研究的成功完成将导致创建一种技术,该技术提供的图像质量仅受X射线和X射线转换器的基本属性的限制,减少伪影并提高帧速率。最终,这将提高图像质量和/或减少荧光透视程序的剂量,并促进高级临床应用,包括乳腺和胸部断层合成,以及用于乳腺和血管造影程序的CBCT。公共卫生关系:在拟议的研究中开发的新型X射线成像技术的实际应用将显著增强成像能力,最终以各种方式改善患者护理。例如,与现有的X射线技术相比,新技术将有助于在非常低的剂量下实现更高质量的图像(有助于最大限度地减少荧光检查过程中对患者的剂量),并使较小和/或较低对比度的特征可视化(有助于在乳房X线检查中识别可疑物体)。此外,强烈预期新技术将实现高级应用(涉及用于胸部和乳房成像的断层合成或锥形束计算机断层摄影技术),其需要以相对低的每个图像剂量快速采集多个高质量图像,以便产生三维解剖视图。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LARRY E ANTONUK其他文献

LARRY E ANTONUK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LARRY E ANTONUK', 18)}}的其他基金

Development of a High Sensitivity, X-ray Detector Technology Based on Polycrystalline Mercuric Iodide for Volumetric Breast Imaging
开发基于多晶碘化汞的高灵敏度 X 射线探测器技术,用于体积乳腺成像
  • 批准号:
    9236895
  • 财政年份:
    2016
  • 资助金额:
    $ 137.58万
  • 项目类别:
An Advanced Technology Flat-Panel Imager for Fluoroscopy
用于荧光检查的先进技术平板成像仪
  • 批准号:
    8249853
  • 财政年份:
    2002
  • 资助金额:
    $ 137.58万
  • 项目类别:
An Advanced Technology Flat-Panel Imager for Fluoroscopy
用于荧光检查的先进技术平板成像仪
  • 批准号:
    6548375
  • 财政年份:
    2002
  • 资助金额:
    $ 137.58万
  • 项目类别:
An Advanced Technology Flat-Panel Imager for Fluoroscopy
用于荧光检查的先进技术平板成像仪
  • 批准号:
    7656521
  • 财政年份:
    2002
  • 资助金额:
    $ 137.58万
  • 项目类别:
An Advanced Technology Flat-Panel Imager for Fluoroscopy
用于荧光检查的先进技术平板成像仪
  • 批准号:
    8054213
  • 财政年份:
    2002
  • 资助金额:
    $ 137.58万
  • 项目类别:
An Advanced Technology Flat-Panel Imager for Fluoroscopy
用于荧光检查的先进技术平板成像仪
  • 批准号:
    6775698
  • 财政年份:
    2002
  • 资助金额:
    $ 137.58万
  • 项目类别:
An Advanced Technology Flat-Panel Imager for Fluoroscopy
用于荧光检查的先进技术平板成像仪
  • 批准号:
    6619730
  • 财政年份:
    2002
  • 资助金额:
    $ 137.58万
  • 项目类别:
HYBRID, FLAT-PANEL, ACTIVE MATRIX MAMMOGRAPHIC IMAGER
混合、平板、有源矩阵乳腺X线成像仪
  • 批准号:
    2452354
  • 财政年份:
    1998
  • 资助金额:
    $ 137.58万
  • 项目类别:
HYBRID, FLAT-PANEL, ACTIVE MATRIX MAMMOGRAPHIC IMAGER
混合、平板、有源矩阵乳腺X线成像仪
  • 批准号:
    6150266
  • 财政年份:
    1998
  • 资助金额:
    $ 137.58万
  • 项目类别:
HYBRID, FLAT-PANEL, ACTIVE MATRIX MAMMOGRAPHIC IMAGER
混合、平板、有源矩阵乳腺X线成像仪
  • 批准号:
    2871989
  • 财政年份:
    1998
  • 资助金额:
    $ 137.58万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 137.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了