New Radiation-Activated Antitumor Agents That Target Hypoxia
针对缺氧的新型辐射激活抗肿瘤药物
基本信息
- 批准号:7981141
- 负责人:
- 金额:$ 35.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAerobicAntineoplastic AgentsBiochemicalBiochemistryBiologicalBiological AssayCancer BiologyCellsCellular biologyChemicalsClinicalCoenzymesCouplingDNADNA AlkylationDNA DamageDNA Interstrand CrosslinkingDNA biosynthesisDataDevelopmentDisciplineDoseElectronsEnzymesFDA approvedFundingGenerationsGenetic TranscriptionGoalsGray unit of radiation doseHumanHypoxiaIn VitroIonizing radiationKnowledgeMalignant NeoplasmsMethodologyMissionMotivationNecrosisNew AgentsNormal tissue morphologyOligonucleotidesOrganic ChemistryOxidoreductaseOxygenPharmaceutical ChemistryPharmaceutical PreparationsPhaseProdrugsPropertyPublic HealthRadiationReactionReducing AgentsResearchSeriesSolidSolid NeoplasmSpecificitySynthesis ChemistryTechniquesTechnologyTestingTherapeuticTissuesToxicologyTumor TissueUnited States National Institutes of HealthWaterWorkanalogantitumor agentbasecancer cellcancer therapycrosslinkcytotoxicitydesigndrug candidatedrug developmentdrug discoveryfunctional groupin vivoirradiationkillingsneoplastic cellpublic health relevancesuccesstooltumor
项目摘要
DESCRIPTION (provided by applicant): Cancer therapies kill cancer cells, but are only marginally less toxic to healthy cells. We need more selective agents to specifically kill cancer cells. Since cancer cells divide so rapidly, they are very often hypoxic (oxygen-starved). This hypoxia can be used to specifically target cancer cells for destruction. The long-term goal of this research is to develop new hypoxia-targeting anticancer drugs that are less toxic, more selective, and more potent. The objective of this particular application is to design and synthesize a series of new radiation-activated antitumor agents that contain dual potent effectors and more efficient triggers, and to perform biological studies with both synthetic and cellular DNA. These agents should be non-toxic in normal tissue, and can be selectively activated to release multiple toxic species (effectors) upon irradiation under the hypoxic conditions found in tumor tissue. The effectors are designed to form deleterious DNA damage, such as DNA interstrand cross-links (ICLs) or DNA alkylations that can block DNA replication or transcription and kill tumor cells. The proposed research has been formulated on the basis of our recent discovery that the arylmethyl radicals form the DNA interstrand crosslinks under hypoxic condition. The rationale for the proposed research is that, once the efficient triggers and the potent effectors are developed, the new agents will be more selective and more potent anticancer drug candidates for the treatment of aggressive cancers. Synthetic methodologies will be developed to prepare the proposed compounds. They will be incorporated into short oligonucleotides via solid- phase DNA synthesis. Their DNA-damage profiles and mechanism with respect to cross-link formation and DNA alkylation will be studied. The hypoxia-specificity will be evaluated by examining cross-linking efficiency under hypoxic or aerobic conditions. The most promising agents will be pushed forward for in vitro and in vivo study with tumor cells. In addition, new, potent DNA- damaging functional groups will be prepared, as well as other analogs. The knowledge gained from this study will be useful for addressing fundamental questions concerning DNA damage and anticancer drug development and will benefit a broad range of disciplines, including organic chemistry, biochemistry, medicinal chemistry, toxicology, and cell biology.
PUBLIC HEALTH RELEVANCE: The proposed research is relevant to public health because the development of new hypoxia- targeting antitumor agents has the potential to identify a new class of anticancer drugs for the treatment of aggressive cancers. The knowledge acquired will be useful for addressing fundamental questions concerning DNA damage and anticancer drug development. Thus, the proposed research is relevant to the part of NIH's mission that is in pursuit of fundamental knowledge that will help to reduce the burdens of human illness.
描述(由申请人提供):癌症杀死癌细胞,但对健康细胞的毒性较小。我们需要更多的选择性剂来特别杀死癌细胞。由于癌细胞分裂如此迅速,因此通常是缺氧(耗尽氧气)。该缺氧可用于专门针对癌细胞进行破坏。这项研究的长期目标是开发新的针对低氧靶向抗癌药物,这些药物毒性较小,更有选择性且更有效。该特定应用的目的是设计和合成一系列含有双重有效效应子和更有效触发因素的新辐射激活的抗肿瘤剂,并使用合成和细胞DNA进行生物学研究。这些药物在正常组织中应无毒,并且可以在肿瘤组织中发现的低氧条件下辐照后选择性地激活以释放多种有毒物种(效应子)。效应子设计为形成有害的DNA损伤,例如DNA间交联(ICL)或可以阻止DNA复制或转录并杀死肿瘤细胞的DNA烷基化。拟议的研究是根据我们最近发现的,即在低氧条件下芳基甲基自由基形成了DNA链间交联。拟议的研究的理由是,一旦有效的触发因素和有效的效应子,新的药物将变得更加选择性,更有效的抗癌药物候选物来治疗侵略性癌症。将开发合成方法来制备所提出的化合物。它们将通过固相DNA合成掺入短寡核苷酸中。将研究它们相对于交联形成和DNA烷基化的DNA破坏谱和机制。缺氧特异性将通过在缺氧或有氧条件下检查交联效率来评估。最有前途的药物将被推向体外和体内研究肿瘤细胞的研究。此外,还将准备新的,有效的DNA损害官能团以及其他类似物。从这项研究中获得的知识将有助于解决有关DNA损伤和抗癌药物开发的基本问题,并将受益于广泛的学科,包括有机化学,生物化学,药物化学,毒理学和细胞生物学。
公共卫生相关性:拟议的研究与公共卫生有关,因为针对抗肿瘤剂的新缺氧的发展有可能识别一种新的抗癌药物来治疗侵略性癌症。获得的知识将有助于解决有关DNA损伤和抗癌药物开发的基本问题。因此,拟议的研究与NIH使命的一部分有关,该任务是追求基本知识,这将有助于减轻人类疾病的负担。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
ROS-inducible DNA cross-linking agent as a new anticancer prodrug building block.
- DOI:10.1002/chem.201200075
- 发表时间:2012-03-26
- 期刊:
- 影响因子:4.3
- 作者:Cao, Sheng;Wang, Yibin;Peng, Xiaohua
- 通讯作者:Peng, Xiaohua
Design, Synthesis, and Characterization of Binaphthalene Precursors as Photoactivated DNA Interstrand Cross-Linkers.
作为光激活 DNA 链间交联剂的联萘前体的设计、合成和表征。
- DOI:10.1021/acs.joc.8b00642
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Lin,Zechao;Fan,Heli;Zhang,Qi;Peng,Xiaohua
- 通讯作者:Peng,Xiaohua
Photoswitchable formation of a DNA interstrand cross-link by a coumarin-modified nucleotide.
- DOI:10.1002/anie.201310609
- 发表时间:2014-07-01
- 期刊:
- 影响因子:16.6
- 作者:Haque, Mohammad Mojibul;Sun, Huabing;Liu, Shuo;Wang, Yinsheng;Peng, Xiaohua
- 通讯作者:Peng, Xiaohua
A Template-Mediated Click-Click Reaction: PNA-DNA, PNA-PNA (or Peptide) Ligation, and Single Nucleotide Discrimination.
- DOI:10.1002/ejoc.201000615
- 发表时间:2010-08-01
- 期刊:
- 影响因子:2.8
- 作者:Peng, Xiaohua;Li, Hong;Seidman, Michael
- 通讯作者:Seidman, Michael
Hydrogen peroxide activated quinone methide precursors with enhanced DNA cross-linking capability and cytotoxicity towards cancer cells.
- DOI:10.1016/j.ejmech.2017.03.041
- 发表时间:2017-06-16
- 期刊:
- 影响因子:6.7
- 作者:Wang Y;Fan H;Balakrishnan K;Lin Z;Cao S;Chen W;Fan Y;Guthrie QA;Sun H;Teske KA;Gandhi V;Arnold LA;Peng X
- 通讯作者:Peng X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaohua Peng其他文献
Xiaohua Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaohua Peng', 18)}}的其他基金
Novel DNA cross-linking agents and combination strategies for tumor-specific activation
新型 DNA 交联剂和肿瘤特异性激活的组合策略
- 批准号:
10730787 - 财政年份:2023
- 资助金额:
$ 35.85万 - 项目类别:
相似国自然基金
有氧运动通过MeCP2乳酰化激活ZFP36转录促进TREM2hi巨噬细胞抗炎功能改善动脉粥样硬化的机制研究
- 批准号:82372565
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
- 批准号:82302861
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
- 批准号:82372581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
外泌体介导的巨噬细胞功能改变在长期有氧运动减轻AS进程中的作用及机制
- 批准号:82370446
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Sestrin2介导有氧运动改善小鼠增龄性肠道屏障功能损伤的作用研究
- 批准号:32300961
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-throughput screen for specific small-molecule inhibitors of HIF-2A activity
HIF-2A 活性特异性小分子抑制剂的高通量筛选
- 批准号:
8644634 - 财政年份:2013
- 资助金额:
$ 35.85万 - 项目类别:
The chemical biology of pharmacological ascorbate in cancer treatment
药理学抗坏血酸在癌症治疗中的化学生物学
- 批准号:
9057989 - 财政年份:2013
- 资助金额:
$ 35.85万 - 项目类别: