Light-activated proteolysis as a tool to analyze intracellular protein function
光激活蛋白水解作为分析细胞内蛋白质功能的工具
基本信息
- 批准号:8132228
- 负责人:
- 金额:$ 30.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressBiomedical ResearchC-terminalCOX7A2L ProteinCellsCellular biologyChimeric ProteinsCleaved cellComplexCytoskeletonDevelopmentEngineeringFamily PicornaviridaeFluorescence Resonance Energy TransferGene ExpressionLasersLeadLifeLightLightingMethodsMicroscopeMolecular ModelsPathologic ProcessesPatternPeptide HydrolasesPharmaceutical PreparationsPhenotypePhosphotransferasesPlantsProcessProtease DomainProtein KinaseProteinsProteolysisProteomeRNA InterferenceRegulationReporterResolutionSiteSpecificitySurfaceTalinTechniquesTestingTherapeuticTimebasecell behaviorchromophoredesigngene functionhigh throughput screeninginhibitor/antagonistinnovationinterestmolecular modelingnovelphototropinprotein degradationprotein functionpublic health relevanceresearch studysmall moleculetool
项目摘要
DESCRIPTION (provided by applicant): One of the next great challenges of the postgenomic era is functional analysis of the proteome in space and time, which will be essential to understand normal and pathological cell behavior. Direct analysis of protein function in complex intracellular processes requires a method to acutely, rapidly and specifically inactivate proteins of interest in real time and in selective regions of live cells. Such a method does not exist. Current methods to investigate intracellular protein function have severe limitations, and are either non-specific or lack sufficient spatial and temporal resolution. For example, because RNA interference (RNAi) relies on slow intracellular protein turnover, it is useful to detect long-term phenotypes, but does not allow direct, acute analysis of protein function. Small molecule inhibitors are not broadly applicable because specificity is often hard to establish in live cell experiments, and it is challenging to design inhibitors of non-enzymatic protein functions. In addition, both of these methods can only be applied to whole cells and are not useful to analyze spatially restricted intracellular processes. Finally, photoablation and chromophore-assisted laser inactivation (CALI) employ non-specific, non-reversible protein destruction using high power illumination. The objective of this project is to address this challenge by developing an innovative, versatile, genetically-encoded method by which a protein of interest can be disrupted by specific light-activated proteolysis in either whole cells or intracellular regions as a novel tool to analyze protein function in live cells. Because we propose to use light to toggle protease activity, experiments can be carried out entirely on an adequately equipped microscope allowing unprecedented high temporal and spatial control of intracellular protein inactivation by using patterned illumination. Such a technique would revolutionize cell biology, and would have an exceptionally high impact on the analysis of intracellular processes that occur on short time scales, and rely on direct regulation of protein activity rather than gene expression changes. The strategy to achieve this objective will involve two major steps: 1) Design and optimize a light-activated site-specific protease by combining the photosensory domain of plant phototropins with the exceptionally high specificity of picornavirus 3C proteases; and 2) Validate feasibility by genetically engineering protease-sensitive proteins of interest, and analyze functional consequences of light-activated target protein inactivation in live cells in which endogenous function of the gene of interest has been silenced by RNAi. We will test our approach by generating protease-sensitive versions of two multi-domain cytoskeleton proteins, talin and EB1, and by constructing a protease-sensitive kinase domain to demonstrate feasibility and versatility.
PUBLIC HEALTH RELEVANCE: This project aims to build a novel tool to inactivate specific proteins in live cells with high spatial and temporal control by developing a light-activated site-specific protease in combination with a protease-sensitive version of a target protein of interest. A method to specifically, rapidly and locally disrupt intracellular protein function does not currently exist, and development of such a tool will have a high impact on the analysis of intracellular protein function in many fields of biomedical research. Detailed analysis of protein function in live cells is required to understand normal and pathological processes in cells, and will lead to the development of novel drugs and therapeutic strategies.
DESCRIPTION (provided by applicant): One of the next great challenges of the postgenomic era is functional analysis of the proteome in space and time, which will be essential to understand normal and pathological cell behavior. Direct analysis of protein function in complex intracellular processes requires a method to acutely, rapidly and specifically inactivate proteins of interest in real time and in selective regions of live cells. Such a method does not exist. Current methods to investigate intracellular protein function have severe limitations, and are either non-specific or lack sufficient spatial and temporal resolution. For example, because RNA interference (RNAi) relies on slow intracellular protein turnover, it is useful to detect long-term phenotypes, but does not allow direct, acute analysis of protein function. Small molecule inhibitors are not broadly applicable because specificity is often hard to establish in live cell experiments, and it is challenging to design inhibitors of non-enzymatic protein functions. In addition, both of these methods can only be applied to whole cells and are not useful to analyze spatially restricted intracellular processes. Finally, photoablation and chromophore-assisted laser inactivation (CALI) employ non-specific, non-reversible protein destruction using high power illumination. The objective of this project is to address this challenge by developing an innovative, versatile, genetically-encoded method by which a protein of interest can be disrupted by specific light-activated proteolysis in either whole cells or intracellular regions as a novel tool to analyze protein function in live cells. Because we propose to use light to toggle protease activity, experiments can be carried out entirely on an adequately equipped microscope allowing unprecedented high temporal and spatial control of intracellular protein inactivation by using patterned illumination. Such a technique would revolutionize cell biology, and would have an exceptionally high impact on the analysis of intracellular processes that occur on short time scales, and rely on direct regulation of protein activity rather than gene expression changes. The strategy to achieve this objective will involve two major steps: 1) Design and optimize a light-activated site-specific protease by combining the photosensory domain of plant phototropins with the exceptionally high specificity of picornavirus 3C proteases; and 2) Validate feasibility by genetically engineering protease-sensitive proteins of interest, and analyze functional consequences of light-activated target protein inactivation in live cells in which endogenous function of the gene of interest has been silenced by RNAi. We will test our approach by generating protease-sensitive versions of two multi-domain cytoskeleton proteins, talin and EB1, and by constructing a protease-sensitive kinase domain to demonstrate feasibility and versatility.
PUBLIC HEALTH RELEVANCE: This project aims to build a novel tool to inactivate specific proteins in live cells with high spatial and temporal control by developing a light-activated site-specific protease in combination with a protease-sensitive version of a target protein of interest. A method to specifically, rapidly and locally disrupt intracellular protein function does not currently exist, and development of such a tool will have a high impact on the analysis of intracellular protein function in many fields of biomedical research. Detailed analysis of protein function in live cells is required to understand normal and pathological processes in cells, and will lead to the development of novel drugs and therapeutic strategies.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Torsten Wittmann其他文献
Torsten Wittmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Torsten Wittmann', 18)}}的其他基金
Probing Microtubule Function in Neuronal Development
探索神经元发育中的微管功能
- 批准号:
10116503 - 财政年份:2018
- 资助金额:
$ 30.59万 - 项目类别:
Probing Microtubule Function in Neuronal Development
探索神经元发育中的微管功能
- 批准号:
10362567 - 财政年份:2018
- 资助金额:
$ 30.59万 - 项目类别:
Probing Microtubule Function in Neuronal Development
探索神经元发育中的微管功能
- 批准号:
9886299 - 财政年份:2018
- 资助金额:
$ 30.59万 - 项目类别:
Light-activated proteolysis as a tool to analyze intracellular protein function
光激活蛋白水解作为分析细胞内蛋白质功能的工具
- 批准号:
8539033 - 财政年份:2010
- 资助金额:
$ 30.59万 - 项目类别:
Light-activated proteolysis as a tool to analyze intracellular protein function
光激活蛋白水解作为分析细胞内蛋白质功能的工具
- 批准号:
8325134 - 财政年份:2010
- 资助金额:
$ 30.59万 - 项目类别:
Light-activated proteolysis as a tool to analyze intracellular protein function
光激活蛋白水解作为分析细胞内蛋白质功能的工具
- 批准号:
7993343 - 财政年份:2010
- 资助金额:
$ 30.59万 - 项目类别:
Spinning disk confocal / FRAP microscope for quantitative live cell imaging
用于定量活细胞成像的转盘共焦/FRAP 显微镜
- 批准号:
7792018 - 财政年份:2010
- 资助金额:
$ 30.59万 - 项目类别:
Microtubule dynamics during cell polarity and migration
细胞极性和迁移过程中的微管动力学
- 批准号:
7808914 - 财政年份:2008
- 资助金额:
$ 30.59万 - 项目类别:
Microtubule dynamics during cell polarity and migration
细胞极性和迁移过程中的微管动力学
- 批准号:
8989112 - 财政年份:2008
- 资助金额:
$ 30.59万 - 项目类别:
Microtubule dynamics during cell polarity and migration
细胞极性和迁移过程中的微管动力学
- 批准号:
7614315 - 财政年份:2008
- 资助金额:
$ 30.59万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.59万 - 项目类别:
Research Grant