Mechanisms of Drosophila Tumor Suppression
果蝇肿瘤抑制机制
基本信息
- 批准号:8128659
- 负责人:
- 金额:$ 27.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-16 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAnimalsArchitectureBiological ModelsBiologyCell Differentiation processCell ProliferationCell physiologyCellsChromatinClinicalControl GroupsDataDevelopmentDimensionsDrosophila genusEnsureEpigenetic ProcessEpithelialEpithelial Cell ProliferationEpithelial CellsF-Box ProteinsFamilyGene MutationGenesGeneticGenetic ScreeningGenomeGoalsGrowthHumanInterventionLigandsLightLimb structureMalignant NeoplasmsMolecularNatural regenerationOrganOrgan SizePathway interactionsPolycombProcessRegulationRegulatory PathwayRetinal blind spotRoleSystemTestingTumor SuppressionTumor Suppressor GenesTumor Suppressor ProteinsVertebratesWorkWound HealingX Chromosomebasedesignflygene cloninggenome wide association studyimaginal discinsightmutantneoplasticneoplastic cellnovelpreventpublic health relevancerestraintscaffoldtumorubiquitin ligaseubiquitin-protein ligaseupstream kinase
项目摘要
DESCRIPTION (provided by applicant): The mechanisms by which organs control cell proliferation to reach an appropriate final size during development and regeneration are a central question of biology, and are also critical to an understanding of cancer. Despite intensive work on this question, we currently appreciate only a fraction of these mechanisms. Comprehensive identification of organ growth control pathways will be required as a precursor to 'systems'-level understanding, and will also open up new avenues for manipulation and clinical intervention. Drosophila has become a favorite model system for understanding the basic cellular functions and intercellular interactions by which organ dimensions are determined. The identification of Drosophila 'tumor suppressor genes (TSGs)', mutations in which cause cells and/or organs to overproliferate, has provided both mechanistic insight into known pathways as well as the identification of completely new organ size control pathways that appear conserved in vertebrates. Several extensive screens for fly TSGs have been carried out, but these have a significant blind spot: they rely on survival and appropriate differentiation of the cells in the adult, as well as adult survival of the tumor- containing animal. We have designed and executed a novel genetic screen ('MENE') that isolates a previously inaccessible set of potent TSGs, mutations in which cause lethal and often disorganized overgrowth of poorly differentiated imaginal disc cells ('neoplastic TSGs'). In this proposal, we will use new mutants from the MENE screen as an entry point to study two distinct cellular functions with unappreciated roles in restraining tissue growth. The first involves epigenetic control of growth by the Polycomb Group (PcG) family of chromatin regulators. The second involves a ubiquitin ligase that regulates both cell proliferation and epithelial polarity. We will determine the mechanism of growth restraint for these TSGs, and integrate their activities into known pathways controlling disc growth. Finally, we will extend the genome-wide screen for neoplastic TSGs, in order to identify additional pathways that restrain disc cell proliferation and elucidate the common mechanisms that underlie all neoplastic TSG activities. Together, these studies will advance our long-term goal of understanding the entire constellation of cellular processes by which organs control their growth and prevent tumor formation.
PUBLIC HEALTH RELEVANCE: The mechanisms by which organs control cell proliferation to reach an appropriate final size are a central question of biology, and are also critical to an understanding of cancer. Drosophila provides a simple model system ideal for unbiased, genome-wide identification of genes that prevent cellular overproliferation. This proposal will elucidate how two new and unappreciated cellular mechanisms function and interact with other known mechanisms to ensure proper tissue growth in the fly, and identify further novel growth-control mechanisms that are likely to be conserved in humans.
描述(由申请人提供):器官在发育和再生过程中控制细胞增殖达到适当最终大小的机制是生物学的核心问题,也是理解癌症的关键。尽管在这个问题上进行了大量工作,但我们目前只了解这些机制的一小部分。器官生长控制途径的全面识别将需要作为“系统”级理解的先驱,也将为操作和临床干预开辟新的途径。果蝇已经成为理解基本细胞功能和细胞间相互作用的一个最受欢迎的模型系统,器官的大小是由这些相互作用决定的。果蝇“肿瘤抑制基因(TSGs)”的鉴定,即导致细胞和/或器官过度增殖的突变,提供了对已知途径的机制洞察,以及对脊椎动物中似乎保守的全新器官大小控制途径的鉴定。已经对蝇类tsg进行了几次广泛的筛选,但这些筛查存在一个明显的盲点:它们依赖于成虫体内细胞的存活和适当分化,以及含瘤动物的成虫存活。我们设计并实施了一种新的遗传筛选方法(MENE),该方法分离出一组以前无法获得的强效tsg,这些突变会导致低分化的影像学椎间盘细胞(“肿瘤性tsg”)致命且经常无序的过度生长。在本提案中,我们将使用来自MENE筛选的新突变体作为切入点来研究两种不同的细胞功能,这些功能在抑制组织生长方面具有未被认识的作用。第一个涉及染色质调节因子Polycomb Group (PcG)家族对生长的表观遗传控制。第二种涉及调节细胞增殖和上皮极性的泛素连接酶。我们将确定这些tsg的生长抑制机制,并将其活性整合到控制椎间盘生长的已知途径中。最后,我们将扩大肿瘤TSG的全基因组筛选,以确定抑制椎间盘细胞增殖的其他途径,并阐明所有肿瘤TSG活性的共同机制。总之,这些研究将推进我们的长期目标,即了解器官控制其生长和防止肿瘤形成的整个细胞过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Bilder其他文献
David Bilder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Bilder', 18)}}的其他基金
Molecular Biology Across Scales Training Program
跨尺度分子生物学培训计划
- 批准号:
10555915 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Polarity, growth, and morphogenesis of epithelia
上皮细胞的极性、生长和形态发生
- 批准号:
10312799 - 财政年份:2019
- 资助金额:
$ 27.38万 - 项目类别:
Polarity, growth, and morphogenesis of epithelia
上皮细胞的极性、生长和形态发生
- 批准号:
10548124 - 财政年份:2019
- 资助金额:
$ 27.38万 - 项目类别:
Shaping of simple organ by anisotropic biomechanical forces
通过各向异性生物力学力塑造简单器官
- 批准号:
8736405 - 财政年份:2014
- 资助金额:
$ 27.38万 - 项目类别:
Shaping of simple organ by anisotropic biomechanical forces
通过各向异性生物力学力塑造简单器官
- 批准号:
9329300 - 财政年份:2014
- 资助金额:
$ 27.38万 - 项目类别:
Shaping of simple organ by anisotropic biomechanical forces
通过各向异性生物力学力塑造简单器官
- 批准号:
9125853 - 财政年份:2014
- 资助金额:
$ 27.38万 - 项目类别:
PQ6 MECHANISMS OF CACHEXIA LIKE WASTING IN A DROSPHILA CANCER MODEL
果蝇癌症模型中恶病质样消瘦的 PQ6 机制
- 批准号:
8591196 - 财政年份:2013
- 资助金额:
$ 27.38万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 27.38万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 27.38万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 27.38万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 27.38万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 27.38万 - 项目类别:
Training Grant