Reversal of Spermatogonial Arrest in Mice
逆转小鼠精原细胞停滞
基本信息
- 批准号:8041059
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-04-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdolescentAffectAndrogensBiologicalBody TemperatureCell Differentiation processCellsDefectDevelopmentEventExperimental Animal ModelGenesGeneticGerm CellsHigh temperature of physical objectHormonesHumanIn VitroInfertilityLeadLinkMale InfertilityMetabolicMetabolismModelingMolecularMusMutant Strains MiceMutationOligospermiaProcessPublicationsPublishingRNA ProcessingRegulationResearchRibosomal RNASperm Count ProcedureSpermatocytesSpermatogenesisSpermatogoniaStagingTemperatureTestingTestosteroneToxicant exposureToyin vivoinsightmensoysperm cellspermatogonial arresttoxicant
项目摘要
DESCRIPTION (provided by applicant): Genetic defects or toxicant exposure often result in blocks in early germ cell development, but in some cases elevation of temperature or lowering testosterone levels can overcome this block. This suggests that the low scrotal temperatures and high intratesticular testosterone may not be optimal for spermatogonial and spermatocyte development in these pathological cases, and that effects restorative of testosterone suppression and elevated temperature might be mechanistically linked. We hypothesize that suppression of testosterone elevates testicular temperature, which then enhances general or specific metabolic events to overcome genetic or toxicant induced blocks. The juvenile spermatogonial depletion (jsd) mutant mouse is one model to study the mechanisms by which elevated temperature and hormone suppression can alleviate the block in spermatogonial differentiation. Jsd is a mutation in the Utp14b gene, which is involved in ribosomal RNA processing. Utp14b is a copy of the widely expressed (except spermatocytes) X linked Utp14a gene. Utp14b is mainly expressed in germ cells. We propose that in jsd mice, testosterone suppression leads to a gradual temperature increase, which restores ribosomal RNA processing by upregulating Utp14a in spermatogonia and/or spermatocytes. We will test between this model and alternatives with the following Specific Aims: (I) Determine whether testosterone suppression elevates testicular temperature in vivo, whether testosterone inhibits spermatogonial differentiation by acting on cells involved in temperature regulation, and whether temperature but not testosterone affects differentiation in vitro. (II) Determine if 18S ribosomal RNA processing is defective in both spermatogonia and spermatocytes of jsd mice at scrotal temperatures, and if processing is more efficient at body temperature. (III) Determine the specific or general metabolic processes that are altered by elevation of temperature to overcome the defects in germ cell differentiation. If temperature elevation restores 18S rRNA processing in jsd mice, then increases in Utp14a levels in germ cells will be examined as a specific compensatory mechanism. In addition, (IV) we will evaluate the application of testosterone suppression and elevated temperature to enhance spermatogonial development in irradiated mice, a toxicant induced model of hypospermatogenesis. These results will provide insight into the molecular mechanisms underlying aspects of temperature and androgen effects on spermatogenesis and reveal a direct mechanistic link between these two modulators. This information would significantly contribute to both our basic understanding of the biological mechanisms involved in spermatogenesis, and to possible treatments for oligospermia or azoospermia in men.
Partial or complete blocks at the early stages of spermatogenesis results in low or zero sperm counts, a problem that appears to be increasing in men. Elucidation of the causes of such blocks and the mechanisms by which temperature elevation and hormone suppression can reverse them in experimental animal models could apply to treatment of genetically or environmentally caused male infertility in humans. Further, proof of our hypothesis that the effects of testosterone suppression and temperature elevation are mechanistically linked would lead to new insights and interpretations of published research.
描述(由申请人提供):遗传缺陷或有毒物质暴露通常会导致早期生殖细胞发育受阻,但在某些情况下,升高温度或降低睾酮水平可以克服这种阻碍。这表明,在这些病理情况下,低阴囊温度和高睾丸内睾酮可能不是精原细胞和精母细胞发育的最佳条件,睾酮抑制的恢复效果和升高的温度可能是机械相关的。我们假设,抑制睾酮升高睾丸温度,然后增强一般或特定的代谢事件,以克服遗传或毒物诱导的块。幼年型精原细胞耗竭(jsd)突变小鼠是研究高温和激素抑制缓解精原细胞分化阻滞机制的模型之一。Jsd是Utp 14 b基因中的突变,其参与核糖体RNA加工。Utp 14 b是广泛表达的(除精母细胞外)X连锁Utp 14 a基因的拷贝。utp 14 b主要在生殖细胞中表达。我们建议,在jsd小鼠,睾酮抑制导致温度逐渐升高,这恢复核糖体RNA加工上调Utp 14 a在精原细胞和/或精母细胞。我们将在该模型和替代模型之间进行测试,具体目的如下:(I)确定睾酮抑制是否在体内升高睾丸温度,睾酮是否通过作用于参与温度调节的细胞来抑制精原细胞分化,以及温度而不是睾酮是否影响体外分化。(II)确定在阴囊温度下,jsd小鼠精原细胞和精母细胞的18 S核糖体RNA加工是否有缺陷,以及在体温下加工是否更有效。(III)确定特定或一般的代谢过程,通过温度升高改变,以克服生殖细胞分化的缺陷。如果温度升高恢复了jsd小鼠的18 S rRNA加工,那么生殖细胞中Utp 14 a水平的增加将被视为一种特定的补偿机制。此外,(IV)我们将评估睾酮抑制和升高温度在辐射小鼠(一种毒物诱导的精子生成障碍模型)中促进精原细胞发育的应用。这些结果将提供深入了解温度和雄激素对精子发生影响的分子机制,并揭示这两种调节剂之间的直接机制联系。这些信息将大大有助于我们对精子发生的生物学机制的基本理解,以及对男性少精子症或无精子症的可能治疗。
在精子发生的早期阶段部分或完全阻断导致精子数量低或为零,这一问题在男性中似乎越来越严重。在实验动物模型中阐明这种阻滞的原因以及温度升高和激素抑制可以逆转它们的机制,可以适用于治疗遗传或环境引起的人类男性不育症。此外,证明我们的假设,即睾酮抑制和温度升高的影响是机械联系将导致新的见解和解释发表的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marvin L. Meistrich其他文献
Focus on Fertility Preservation Hormonal suppression for fertility preservation in males and females
关注生育力保存 抑制激素以保存男性和女性的生育力
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Marvin L. Meistrich;G. Shetty - 通讯作者:
G. Shetty
“Cytogenetic” studies of spermatids of mice carrying Cattanach's translocation by flow cytometry
- DOI:
10.1007/bf00292269 - 发表时间:
1979-09-01 - 期刊:
- 影响因子:2.300
- 作者:
Marvin L. Meistrich;Wolfgang Göhde;R. Allen White;Jill L. Longtin - 通讯作者:
Jill L. Longtin
Contribution of thymine dimers to the ultraviolet light inactivation of mutants of bacteriophage T4
- DOI:
10.1016/s0022-2836(72)80008-1 - 发表时间:
1972-04-28 - 期刊:
- 影响因子:
- 作者:
Marvin L. Meistrich - 通讯作者:
Marvin L. Meistrich
849 - Semen Analyses in Patients with Cancer
- DOI:
10.1016/s0022-5347(17)75999-x - 发表时间:
1987-06-01 - 期刊:
- 影响因子:
- 作者:
Phillip G. Wise;Larry I. Lipshultz;Marvin L. Meistrich - 通讯作者:
Marvin L. Meistrich
Marvin L. Meistrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marvin L. Meistrich', 18)}}的其他基金
Next Generation Therapies for Fertility Preservation in Male Cancer Patients
男性癌症患者保留生育能力的下一代疗法
- 批准号:
10402370 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Next Generation Therapies for Fertility Preservation in Male Cancer Patients
男性癌症患者保留生育能力的下一代疗法
- 批准号:
10165774 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Next Generation Therapies for Fertility Preservation in Male Cancer Patients
男性癌症患者保留生育能力的下一代疗法
- 批准号:
10627798 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Activation of Spermatogenic Recovery After Toxic Insult
中毒后生精恢复的激活
- 批准号:
7847973 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
HORMONE CONTROL OF SPERMATOGONIAL ARREST IN MUTANT MICE
突变小鼠精原细胞停滞的激素控制
- 批准号:
6707997 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
HORMONE CONTROL OF SPERMATOGONIAL ARREST IN MUTANT MICE
突变小鼠精原细胞停滞的激素控制
- 批准号:
7020054 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
HORMONE CONTROL OF SPERMATOGONIAL ARREST IN MUTANT MICE
突变小鼠精原细胞停滞的激素控制
- 批准号:
6623778 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
HORMONE CONTROL OF SPERMATOGONIAL ARREST IN MUTANT MICE
突变小鼠精原细胞停滞的激素控制
- 批准号:
6470184 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




