Molecular Transducers Linking Shear Stress to Capillary Sprouting and Stability
将剪切应力与毛细管萌芽和稳定性联系起来的分子传感器
基本信息
- 批准号:8109956
- 负责人:
- 金额:$ 23.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAmplifiersAngiopoietin-1ApoptosisAreaBehaviorBiochemicalBiological AssayBlood VesselsBlood capillariesBlood flowCD36 geneCell ProliferationCell physiologyCellsCustomDataDevicesDown-RegulationElementsEndothelial CellsExcisionExhibitsExposure toFeedbackIn VitroInflammationInjuryInvadedLegal patentLinkLiquid substanceMembrane GlycoproteinsMessenger RNAMicroscopicModelingMolecularOrganPaperPatternPermeabilityPhasePhenotypePositioning AttributeProcessProliferatingProtocols documentationRattusRegulationReportingReverse Transcriptase Polymerase Chain ReactionSignal PathwaySignal TransductionSimulateStimulusSurfaceTestingTextThrombospondin 1TimeTissuesTransducersUnited States National Institutes of HealthUp-RegulationVascular Endothelial Growth Factor CVascular Endothelial Growth FactorsWestern BlottingWithdrawalWound Healingangiogenesisbasecapillarycell behaviorcell motilityconditioningdesignin vivointerestmigrationprotein expressionpublic health relevancereceptorrestorationshear stress
项目摘要
DESCRIPTION (provided by applicant): During angiogenesis, subsets of endothelial cells exhibit unique phenotypes that may be indicative of important changes in cell behavior. Recently, we identified a capillary sprout-specific angiogenic "CD36low" endothelial phenotype that is marked by the downregulation of CD36. Interestingly, CD36 is the receptor through which Thrombospondin-1 (TSP-1) exerts its anti-angiogenic activity. From these basic observations, we generated the hypothesis that the loss of exposure to fluid shear stress elicits the expression of an angiogenic phenotype which, in turn, facilitates continued sprouting. In support of this hypothesis, we have found that the withdrawal of shear stress is a potent inducer of the CD36low phenotype, yielding CD36 expression patterns that are consistent with in vivo observations in sprouts. In addition, we are also interested in identifying and testing other molecules that are regulated by shear stress and critical for sprouting and/or capillary stability. To this end, we have identified angiopoietin-1 (ANG-1), ANG-2, and vascular endothelial growth factor-C (VEGF-C) as potential candidates. Moreover, we have confirmed the in vitro results by showing that ANG-2 is highly expressed at sprout tips. Overall, these results are particularly significant because, to date, no molecular linkages between shear stress and sprouting/stability have been mechanistically verified. This proposal consists of two specific aims. In Aim #1, we will determine whether the application of a "capillary sprouting" shear stress protocol to endothelial cells elicits an angiogenic phenotype that is recapitulated in vivo. Here, we will use a custom RT-PCR array to characterize the "shear-withdrawn" sprouting phenotype and determine whether the in vivo expression patterns of selected phenotypic markers are consistent with regulation by shear stress. This analysis will include CD36, ANG-1, ANG-2, and VEGF-C, which have already been implicated in preliminary studies. In Aim #2, we will determine whether endothelial cells that are pre-conditioned with the same "capillary sprouting" shear stress protocol exhibit enhanced angiogenic function (i.e. proliferation, migration, and barrier function) through changes in the expression of CD36, ANG-1, ANG-2, and/or VEGF-C. If selectively blocking and/or enhancing one or more of these candidate molecules significantly alters angiogenic function, a molecular linkage between shear stress and capillary sprouting/microvessel stability will have been mechanistically isolated for the first time.
PUBLIC HEALTH RELEVANCE: During inflammation and tissue injury, new microscopic blood vessels grow by sprouting from existing blood vessels. This process is essential for building functional blood vessel networks in the repaired tissue, and we hypothesize that the withdrawal of exposure to shear stress, which is generated by blood flow, enhances the ability of endothelial cells to make sprouts. In this proposal, we will determine how the removal of shear stress from endothelial cells affects both the expression of proteins associate with sprouting, as well as endothelial cell proliferation, migration, and permeability. In addition, by blocking the function of molecules that are shown to be altered with the removal of shear stress, we will determine which molecules are responsible for eliciting sprouting behaviors.
描述(由申请人提供):在血管生成过程中,内皮细胞亚群表现出独特的表型,这可能表明细胞行为的重要变化。最近,我们发现了一种毛细血管芽特异性血管生成“CD36low”内皮表型,其特征是 CD36 下调。有趣的是,CD36 是 Thrombospondin-1 (TSP-1) 发挥其抗血管生成活性的受体。根据这些基本观察,我们提出了这样的假设:失去流体剪切应力的暴露会引发血管生成表型的表达,进而促进持续发芽。为了支持这一假设,我们发现剪切应力的撤消是 CD36low 表型的有效诱导剂,产生的 CD36 表达模式与豆芽中的体内观察结果一致。此外,我们还对识别和测试受剪切应力调节并对发芽和/或毛细管稳定性至关重要的其他分子感兴趣。为此,我们确定了血管生成素-1 (ANG-1)、ANG-2 和血管内皮生长因子-C (VEGF-C) 作为潜在候选药物。此外,我们通过显示 ANG-2 在芽尖高表达来证实体外结果。总的来说,这些结果特别重要,因为迄今为止,剪切应力和发芽/稳定性之间的分子联系尚未得到机械验证。 该提案包含两个具体目标。在目标#1中,我们将确定对内皮细胞应用“毛细血管出芽”剪切应力方案是否会引发体内重现的血管生成表型。在这里,我们将使用定制的 RT-PCR 阵列来表征“剪切撤退”的发芽表型,并确定所选表型标记的体内表达模式是否与剪切应力的调节一致。该分析将包括 CD36、ANG-1、ANG-2 和 VEGF-C,这些已在初步研究中涉及。在目标#2中,我们将确定用相同的“毛细血管出芽”剪切应力方案预处理的内皮细胞是否通过CD36、ANG-1、ANG-2和/或VEGF-C表达的变化表现出增强的血管生成功能(即增殖、迁移和屏障功能)。如果选择性阻断和/或增强这些候选分子中的一个或多个显着改变血管生成功能,则剪切应力和毛细血管出芽/微血管稳定性之间的分子联系将首次被机械分离。
公共卫生相关性:在炎症和组织损伤期间,新的微观血管会从现有血管中生长出来。这个过程对于在修复的组织中构建功能性血管网络至关重要,我们假设,摆脱血流产生的剪切应力可以增强内皮细胞发芽的能力。在本提案中,我们将确定去除内皮细胞的剪切应力如何影响与出芽相关的蛋白质的表达,以及内皮细胞的增殖、迁移和通透性。此外,通过阻断随着剪切应力的消除而改变的分子的功能,我们将确定哪些分子负责引发发芽行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard J. Price其他文献
A novel ‘bottom-up’ synthesis of few- and multi-layer graphene platelets with partial oxidation via cavitation
- DOI:
10.1016/j.ultsonch.2019.03.020 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Richard J. Price;Paul I. Ladislaus;Graham C. Smith;Trevor J. Davies - 通讯作者:
Trevor J. Davies
Dynamics of Adult Axin2 Cell Lineage Integration in Granule Neurons of the Dentate Gyrus
齿状回颗粒神经元中成人 Axin2 细胞谱系整合的动态
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Khadijeh A. Sharifi;Faraz Farzad;Sauson Soldozy;Richard J. Price;M. Y. S. Kalani;P. Tvrdik - 通讯作者:
P. Tvrdik
Focused ultrasound augments the delivery and penetration of model therapeutics into cerebral cavernous malformations
聚焦超声增强了模型治疗药物向脑海绵状血管畸形的递送和渗透。
- DOI:
10.1016/j.jconrel.2025.113861 - 发表时间:
2025-07-10 - 期刊:
- 影响因子:11.500
- 作者:
Delaney G. Fisher;Matthew R. Hoch;Catherine M. Gorick;Claire Huchthausen;Victoria R. Breza;Khadijeh A. Sharifi;Petr Tvrdik;G. Wilson Miller;Richard J. Price - 通讯作者:
Richard J. Price
Focused ultrasound-microbubble treatment arrests the growth and formation of cerebral cavernous malformations
聚焦超声微泡治疗可阻止脑海绵状畸形的生长和形成
- DOI:
10.1038/s41551-025-01390-z - 发表时间:
2025-05-13 - 期刊:
- 影响因子:26.600
- 作者:
Delaney G. Fisher;Tanya Cruz;Matthew R. Hoch;Khadijeh A. Sharifi;Ishaan M. Shah;Catherine M. Gorick;Victoria R. Breza;Anna C. Debski;Joshua D. Samuels;Jason P. Sheehan;David Schlesinger;David Moore;James W. Mandell;John R. Lukens;G. Wilson Miller;Petr Tvrdik;Richard J. Price - 通讯作者:
Richard J. Price
Richard J. Price的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard J. Price', 18)}}的其他基金
Genome Editing the Blood-Brain Barrier with Sonoselective Focused Ultrasound
利用声选择性聚焦超声对血脑屏障进行基因组编辑
- 批准号:
10403487 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Genome Editing the Blood-Brain Barrier with Sonoselective Focused Ultrasound
利用声选择性聚焦超声对血脑屏障进行基因组编辑
- 批准号:
10554403 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
ImmunoPET Assessment of anti-CD47 Immunotherapy Delivery to Glioblastoma with Focused Ultrasound
使用聚焦超声对胶质母细胞瘤进行抗 CD47 免疫治疗的免疫PET评估
- 批准号:
10041000 - 财政年份:2020
- 资助金额:
$ 23.1万 - 项目类别:
Innovative systemic gene therapy for treating Parkinson's disease
治疗帕金森病的创新系统基因疗法
- 批准号:
10164880 - 财政年份:2019
- 资助金额:
$ 23.1万 - 项目类别:
Innovative systemic gene therapy for treating Parkinson's disease
治疗帕金森病的创新系统基因疗法
- 批准号:
9927696 - 财政年份:2019
- 资助金额:
$ 23.1万 - 项目类别:
Innovative systemic gene therapy for treating Parkinson's disease
治疗帕金森病的创新系统基因疗法
- 批准号:
10394379 - 财政年份:2019
- 资助金额:
$ 23.1万 - 项目类别:
Innovative systemic gene therapy for treating Parkinson's disease
治疗帕金森病的创新系统基因疗法
- 批准号:
10609832 - 财政年份:2019
- 资助金额:
$ 23.1万 - 项目类别:
Endothelial DNA Methylation, Arteriogenic Capacity, and Shear Stress "Set-Point."
内皮 DNA 甲基化、动脉生成能力和剪切应力“设定点”。
- 批准号:
9311466 - 财政年份:2017
- 资助金额:
$ 23.1万 - 项目类别:
Application of Laser Speckle Flowmetry to Vascular Remodeling
激光散斑流量计在血管重塑中的应用
- 批准号:
8765491 - 财政年份:2014
- 资助金额:
$ 23.1万 - 项目类别:
Application of Laser Speckle Flowmetry to Vascular Remodeling
激光散斑流量计在血管重塑中的应用
- 批准号:
8887112 - 财政年份:2014
- 资助金额:
$ 23.1万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 23.1万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 23.1万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 23.1万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Collaborative R&D