Pulsed EPR Studies of Biological Manganese Clusters
生物锰簇的脉冲 EPR 研究
基本信息
- 批准号:8005178
- 负责人:
- 金额:$ 15.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-07 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsApplications GrantsBindingBiologicalBiologyChemistryComplexCouplesElectron Nuclear Double ResonanceElectron Spin Resonance SpectroscopyElectronsEnzymesFoodFreezingFrequenciesGoalsLasersLifeLigationLocationManganeseMedicineMetalsMethodsMolecularMutagenesisOxidation-ReductionOxygenPhysiologic pulsePlantsPlayProcessProtonsResearchResolutionRespirationRoleSamplingSourceSpectrum AnalysisStructureSystemTechnologyTransition ElementsWateratmospheric carbon dioxidecofactordesigninstrumentinterestmillisecondoxidationphotosystem IIplanetary Atmosphereresearch studytyrosine radical
项目摘要
DESCRIPTION (provided by applicant): The transition metal manganese plays a variety of important roles in biology and medicine. For example, a large number of enzymes use Mn(ll) in their catalytic centers. Along with Mn(ll), the higher oxidation states, Mn(lll) and Mn(IV), are also used in crucial oxygen-centered redox chemistry. Of particular interest is the unique water oxidation chemistry enabled by the tetranuclear Mn cluster of the oxygen evolving complex (OEC) of photosystem II. This cluster couples the high oxidation potential of a proximal tyrosine radical (Yz() to the oxidation of two bound waters, releasing molecular oxygen at the final step of a 5-intermediate cycle. Thus this system is an important example of metalloradical chemistry, and the fact that each state can be generated in high yield with laser flashes makes this photosynthetic system ideal for exploring this intriguing chemistry. We will examine the intermediates of the oxygen evolving cycle with multifrequency (9, 31, 35, and 130 GHz) advanced electron paramagnetic resonance (EPR) methods, including ENDOR, ESEEM, and HYSCORE. These experiments will target the structure of the Mn cluster, its amino acid coordination, the location and function of the Ca2+ and Cl- cofactors, and the binding of substrate waters. We will follow leads from new x-ray crystal structures to target specific issues of high current interest. We will use our high field/frequency (130 GHz) EPR/ENDOR instrument to perform high resolution spectroscopy of the Mn cluster in single crystals of photosystem II. Using a newly assembled rapid freeze quench system, we will cryotrap samples on the millisecond timescale after laser flash sequences, with the ultimate goal of characterizing the final short-lived S4-state of the OEC cycle. This research promises to reveal important new details concerning how a biological metal cluster can produce molecular oxygen from water with an efficiency far greater than we can achieve with our current technologies. Relevance: This grant proposal focuses on understanding this vital life process, which produces the oxygen of our atmosphere that we require for respiration, and biologically activates the electrons and protons from water needed by plants to convert atmospheric carbon dioxide into our primary food sources.
描述(申请人提供):过渡金属锰在生物学和医学中起着多种重要作用。例如,大量的酶在其催化中心使用Mn(II)。沿着Mn(II),更高的氧化态Mn(III)和Mn(IV)也用于关键的以氧为中心的氧化还原化学。特别令人感兴趣的是独特的水氧化化学,使四核锰簇的光系统II的氧释放复合物(OEC)。该簇将近端酪氨酸自由基(Yz())的高氧化电位与两个结合沃茨的氧化偶联,在5-中间体循环的最后一步释放分子氧。因此,这个系统是金属自由基化学的一个重要例子,并且每个状态都可以用激光闪光以高产量产生的事实使得这个光合系统成为探索这种有趣化学的理想选择。我们将研究多频(9,31,35和130 GHz)先进的电子顺磁共振(EPR)方法,包括ENDOR,ESEEM和HYSCORE的氧释放循环的中间体。这些实验将针对Mn簇的结构、其氨基酸配位、Ca 2+和Cl-辅因子的位置和功能以及底物沃茨的结合。我们将遵循新的x射线晶体结构的线索,以针对当前高度关注的特定问题。我们将使用我们的高场/频率(130 GHz)的EPR/ENDOR仪器进行高分辨率光谱的Mn集群的光系统II的单晶。使用新组装的快速冷冻淬火系统,我们将在激光闪光序列后的毫秒时间尺度上对低温阱样品进行冷冻,最终目标是表征OEC循环的最终短暂S4状态。这项研究有望揭示有关生物金属簇如何从水中产生分子氧的重要新细节,其效率远远高于我们目前的技术。相关性:这项拨款提案的重点是了解这一重要的生命过程,它产生我们呼吸所需的大气中的氧气,并生物激活植物所需的水的电子和质子,将大气中的二氧化碳转化为我们的主要食物来源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
R David Britt其他文献
R David Britt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('R David Britt', 18)}}的其他基金
Spectroscopy Investigations of Metalloenzyme Mechanisms
金属酶机理的光谱研究
- 批准号:
10378679 - 财政年份:2018
- 资助金额:
$ 15.3万 - 项目类别:
Spectroscopic Investigations of Metalloenzyme Mechanisms
金属酶机制的光谱研究
- 批准号:
10552244 - 财政年份:2018
- 资助金额:
$ 15.3万 - 项目类别:
Spectroscopy Investigations of Metalloenzyme Mechanisms
金属酶机理的光谱研究
- 批准号:
9903396 - 财政年份:2018
- 资助金额:
$ 15.3万 - 项目类别:
Spectroscopy Investigations of Metalloenzyme Mechanisms
金属酶机理的光谱研究
- 批准号:
10160922 - 财政年份:2018
- 资助金额:
$ 15.3万 - 项目类别:
Mechanisms of Radical SAM Enzymes Probed by EPR Spectroscopy
EPR 光谱探讨自由基 SAM 酶的作用机制
- 批准号:
8926453 - 财政年份:2014
- 资助金额:
$ 15.3万 - 项目类别:
Mechanisms of Radical SAM Enzymes Probed by EPR Spectroscopy
EPR 光谱探讨自由基 SAM 酶的作用机制
- 批准号:
9132280 - 财政年份:2014
- 资助金额:
$ 15.3万 - 项目类别:
Mechanisms of Radical SAM Enzymes Probed by EPR Spectroscopy
EPR 光谱探讨自由基 SAM 酶的作用机制
- 批准号:
8632910 - 财政年份:2014
- 资助金额:
$ 15.3万 - 项目类别: