Mechanisms of retrograde signaling between muscle and motor neurons
肌肉和运动神经元之间逆行信号传导的机制
基本信息
- 批准号:8016691
- 负责人:
- 金额:$ 18.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAction PotentialsAddressAxonAxotomyCholinergic ReceptorsCollectionDataDependencyDiffusionEnabling FactorsInjuryLeadLearningLinkMechanicsMediatingMetricMolecularMorphologyMotorMotor EndplateMotor NeuronsMuscleMuscle FibersNatural regenerationNitric OxideNitric Oxide Synthase Type IProcessProductionPropertyReceptor ActivationRecoveryRoleSignal TransductionSynapsesTestingWorkaxotomy responsebaseelectrical propertyinsightnerve supplynovelpreventprotein complexpublic health relevancereceptor bindingreceptor-mediated signalingregenerativereinnervationresponse
项目摘要
DESCRIPTION (provided by applicant): After motoneurons (MNs) lose functional connectivity with muscle by axotomy, a variety of changes occur in MN properties including a switch to a regenerative mode. These changes return to normal when motor axons re-establish synaptic contact with muscle. This evidence indicates that synaptic contact mediates important interactions between muscle and MNs that normally enable expression of normal MN properties and inhibit regeneration, but underlying mechanisms are poorly understood. We have shown that blockade of motor endplate acetylcholine receptors (ACHRs) produces axotomy-like changes in MN current threshold for spike activation (rheobase current), an important metric of MN excitability. Additional evidence we have obtained shows that muscle fiber action potential or mechanical activity is not involved in this signaling. These observations suggest that retrograde signaling between muscle and MNs may be accomplished via ACHR activation. An important question is whether loss of ACHR-mediated signaling can provoke a wider range of post-axotomy effects. If so, then the effects of axotomy may be based on the loss of ACHR-mediated retrograde signaling from muscle rather than injury itself. This novel idea will be tested in Specific Aim 1. Other available evidence indicates that a significant Ca2+ influx is initiated by activation of endplate ACHRs. Such currents could serve to activate downstream mechanisms within muscle and thus link ACHR activation to eventual production of retrograde signals to MNs. Included among several Ca2+-sensitive molecules located at the motor endplate is neuronal nitric oxide synthase (nNOS). Ca2+ activation of nNOS produces nitric oxide (NO) which may signal MNs directly via diffusion to motor terminals or activate further downstream cascades at the motor endplate that ultimately provide retrograde signaling. In Specific Aim 2, we will test the involvement of nNOS in retrograde signaling to MNs by determining whether exogenous NO can prevent axotomy-like changes in MN properties after ACHR blockade. The results of these studies will add new insight into factors that trigger the axotomy response in MNs and begin the identification of molecular mechanisms in muscle which underlie signaling that controls at a minimum MN excitability.
PUBLIC HEALTH RELEVANCE: This work is focused on understanding mechanisms underlying retrograde signaling between muscle and motor neurons. Based on data we collected, we have developed the hypothesis that this signaling is initiated by motor endplate acetylcholine receptor activation. The purpose of the proposed studies is to test whether loss of this signaling underlies the motor neuron response to axotomy and to begin identification of molecular mechanisms in muscle that mediate retrograde signaling.
描述(由申请人提供):在运动神经元(MN)通过轴突切断术失去与肌肉的功能连接后,MN特性发生各种变化,包括转换为再生模式。当运动轴突重新与肌肉建立突触联系时,这些变化恢复正常。这一证据表明,突触接触介导肌肉和MN之间的重要相互作用,通常能够表达正常的MN特性并抑制再生,但基本机制知之甚少。我们已经证明,运动终板乙酰胆碱受体(ACHR)的阻断会导致棘波激活(基强度电流)的MN电流阈值发生轴突切开样变化,这是MN兴奋性的一个重要指标。我们获得的其他证据表明,肌纤维动作电位或机械活动不参与这种信号传导。这些观察结果表明,肌肉和MN之间的逆行信号可能是通过ACHR激活完成的。一个重要的问题是ACHR介导的信号转导的丢失是否会引起更广泛的轴突切断后效应。如果是这样,那么轴突切断的影响可能是基于ACHR介导的肌肉逆行信号的丢失,而不是损伤本身。这一新颖的想法将在具体目标1中得到检验。其他现有证据表明,一个显着的Ca2+内流是由终板ACHR的激活启动。这种电流可以用于激活肌肉内的下游机制,从而将ACHR激活与最终产生向MN的逆行信号联系起来。在位于运动终板的几种Ca 2+敏感分子中包括神经元型一氧化氮合酶(nNOS)。Ca2+激活nNOS产生一氧化氮(NO),其可以通过扩散直接向运动终末或激活运动终板处的进一步下游级联而向MN发出信号,最终提供逆行信号。在具体目标2中,我们将通过确定外源性NO是否可以防止ACHR阻断后MN性质的轴突切断样变化来测试nNOS参与MN的逆行信号传导。这些研究的结果将增加新的洞察力的因素,触发轴突切断反应在MN和开始识别的分子机制,在肌肉的基础信号,控制在最低MN兴奋性。
公共卫生相关性:这项工作的重点是了解肌肉和运动神经元之间逆行信号传导的机制。基于我们收集的数据,我们已经发展了这样的假设,即这种信号是由运动终板乙酰胆碱受体激活。拟议的研究的目的是测试这种信号的丢失是否是运动神经元对轴突切断的反应的基础,并开始鉴定肌肉中介导逆行信号的分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin J Pinter其他文献
Martin J Pinter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin J Pinter', 18)}}的其他基金
Wild-type nerve grafting promotes reinnervation of SOD1 muscle
野生型神经移植促进 SOD1 肌肉的神经支配
- 批准号:
8512110 - 财政年份:2013
- 资助金额:
$ 18.99万 - 项目类别:
Mechanisms of retrograde signaling between muscle and motor neurons
肌肉和运动神经元之间逆行信号传导的机制
- 批准号:
7897453 - 财政年份:2010
- 资助金额:
$ 18.99万 - 项目类别:
Increasing DNA marker informativeness in hereditary canine motor neuron disease
增加遗传性犬运动神经元疾病中 DNA 标记的信息量
- 批准号:
7559659 - 财政年份:2008
- 资助金额:
$ 18.99万 - 项目类别:
MOTOR NEURON DISEASE--NEUROPHYSIOLOGY AND PATHOLOGY
运动神经元疾病--神经生理学和病理学
- 批准号:
2891870 - 财政年份:1993
- 资助金额:
$ 18.99万 - 项目类别:
MOTOR NEURON DISEASE--NEUROPHYSIOLOGY AND PATHOLOGY
运动神经元疾病--神经生理学和病理学
- 批准号:
3418563 - 财政年份:1993
- 资助金额:
$ 18.99万 - 项目类别:
MOTOR NEURON DISEASE-NEUROPHYSIOLOGY AND PATHOLOGY
运动神经元疾病-神经生理学和病理学
- 批准号:
6668670 - 财政年份:1993
- 资助金额:
$ 18.99万 - 项目类别:
MOTOR NEURON DISEASE--NEUROPHYSIOLOGY AND PATHOLOGY
运动神经元疾病--神经生理学和病理学
- 批准号:
2269565 - 财政年份:1993
- 资助金额:
$ 18.99万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 18.99万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 18.99万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 18.99万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 18.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 18.99万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 18.99万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 18.99万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 18.99万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 18.99万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 18.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




