Regulatory roles of variable mechanical stimuli in cell function
可变机械刺激对细胞功能的调节作用
基本信息
- 批准号:8103990
- 负责人:
- 金额:$ 46.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAgingAlveolarApoptosisAtherosclerosisBiologyBlood CirculationBlood VesselsBreathingCell Adhesion MoleculesCell NucleusCell physiologyCellsCessation of lifeCytoskeletonDegenerative DisorderDiseaseEnzymesEpithelialEpithelial CellsExtracellular MatrixFibroblastsGenerationsGenetic TranscriptionGrowthImageIn VitroLaboratoriesLifeLightLungMalignant NeoplasmsMechanicsMedicineMetabolic DiseasesMetabolismOutcomePathogenesisPathway interactionsPatternPhysical environmentPhysiologicalPlayProductionProteinsReactive Oxygen SpeciesResearchRoleScientistSiteSkinSmooth Muscle MyocytesStimulusStretchingStructureSystemTestingTissuesTranslationsType II Epithelial Receptor CellWorkbody systemcell typecytokinein vivoinhibitor/antagonistnetwork modelsnovelpublic health relevanceresponsetissue/cell culturetransmission process
项目摘要
DESCRIPTION (provided by applicant): Most cell types are highly sensitive to their physical environment and physiological forces acting on them play a dominating role in many regulatory cell functions. Such mechanotransduction is always studied using monotonous mechanical stimuli; however, cells in the body are exposed to irregularly varying stimuli. Two examples include breathing and circulation. Recently, we found evidence that in alveolar epithelial type II cells, both in culture and in vivo, the presence of physiological variability in stretch fundamentally alters the secretory response of these cells. Cells sense external mechanical forces via adhesion molecules and the cytoskeleton (CSK). It is thus feasible to assume that through the CSK, most if not all basic cell functions would also be sensitive to variability in mechanical stimuli. Evolutionary forces should favor structures that can adapt to and take advantage of existing variability. Accordingly, our central hypothesis is that physiological levels of variability in mechanical stimuli that are normally present in the body have fundamental regulatory roles in many basic cell functions. This aspect of mechanotransduction has been overlooked in cell and tissue culture studies. A major challenge is therefore to establish whether our findings are specific to epithelial cells or the phenomenon is general representing a major paradigm shift in mechanobiology. To test this hypothesis, we will use four different in vitro cell systems: lung epithelial cells, vascular endothelial and smooth muscle cells and skin or lung fibroblasts. We will test various outcomes in these cell systems in vitro while gradually changing variability in mechanical stimuli. Specifically, we aim to determine the effects of variable stretch (VS) pattern on transcription, translation and secretion of specific cytokines, enzymes and structural ECM proteins. We will also assess the effect of VS on basic cell functions such as division, growth and apoptosis to uncover universal mechanisms among different organ systems. Finally, to determine the possible effects of VS on metabolism, we will assess the generation of reactive oxygen species (ROS) during VS. To shed light on the mechanisms of VS-induced phenomena, we will employ various inhibitors along the mechanotransductory pathway during VS while imaging the constituents and organization of the CSK. We will then develop novel network models of the CSK to better understand mechanical force transmission from adhesion sites through the CSK to the nucleus. If our hypothesis is correct, then besides many basic cell functions, the production and secretion of enzymes, cytokines and ECM building blocks will all be affected by VS. Additionally, VS may also influence ROS which play a crucial role in the pathogenesis of several major diseases including atherosclerosis, neuro- degenerative diseases, metabolic disorders, aging and cancer. Thus, our project - the first to apply VS patterns to probe cell functions - could have far reaching transformative implications for the understanding of how cells work in real living tissues and hence for biology and medicine. This research could thus influence the way scientists including biologists, physiologists, physicists as well as clinicians think about the cell.
PUBLIC HEALTH RELEVANCE: The basic functions of many cell types are sensitive to physiological levels of mechanical forces acting on them and this phenomenon is always studied in the laboratory using monotonous mechanical stimuli. However, cells in the body are exposed to irregularly varying stimuli and this variability may fundamentally alter all essential cell functions including secretion, growth and death. Uncovering how cells deal with such physiological variability may help understand how cells work in real living tissues as well as the pathogenesis of several major diseases including atherosclerosis, neuro-degenerative diseases, metabolic disorders, aging or cancer.
描述(由申请人提供):大多数细胞类型对其物理环境高度敏感,作用于它们的生理力在许多调节细胞功能中起主导作用。这种机械转导总是使用单调的机械刺激来研究;然而,体内的细胞暴露于不规则变化的刺激。两个例子包括呼吸和循环。最近,我们发现的证据表明,在肺泡上皮II型细胞,无论是在文化和在体内,拉伸的生理变异的存在从根本上改变了这些细胞的分泌反应。细胞通过粘附分子和细胞骨架(CSK)感受外部机械力。因此,可以假设通过CSK,大多数(如果不是全部)基本细胞功能也会对机械刺激的变化敏感。进化的力量应该倾向于那些能够适应并利用现有变异性的结构。因此,我们的中心假设是,生理水平的变化,在机械刺激,通常存在于身体中的许多基本细胞功能的基本调节作用。在细胞和组织培养研究中,机械转导的这一方面被忽视了。因此,一个主要的挑战是确定我们的研究结果是否是特定的上皮细胞或现象是普遍代表一个重大的范式转变机械生物学。为了验证这一假设,我们将使用四种不同的体外细胞系统:肺上皮细胞、血管内皮细胞和平滑肌细胞以及皮肤或肺成纤维细胞。我们将在体外测试这些细胞系统的各种结果,同时逐渐改变机械刺激的可变性。具体而言,我们的目标是确定可变拉伸(VS)模式对特定细胞因子,酶和结构ECM蛋白的转录,翻译和分泌的影响。我们还将评估VS对基本细胞功能的影响,如分裂,生长和凋亡,以揭示不同器官系统之间的普遍机制。最后,要确定可能的影响VS的代谢,我们将评估VS过程中的活性氧(ROS)的产生。为了阐明VS诱导的现象的机制,我们将采用各种抑制剂沿着机械转导途径在VS成像的成分和组织的CSK。然后,我们将开发新的网络模型的CSK,以更好地了解机械力从粘附位点通过CSK到细胞核的传输。如果我们的假设是正确的,那么除了许多基本的细胞功能之外,酶、细胞因子和ECM构建块的产生和分泌都将受到VS的影响。此外,VS还可能影响ROS,ROS在几种主要疾病的发病机制中起关键作用,包括动脉粥样硬化、神经退行性疾病、代谢紊乱、衰老和癌症。因此,我们的项目-第一个应用VS模式探测细胞功能-可能对理解细胞如何在真实的活组织中工作产生深远的变革性影响,从而对生物学和医学产生深远的影响。因此,这项研究可能会影响包括生物学家,生理学家,物理学家和临床医生在内的科学家对细胞的看法。
公共卫生关系:许多细胞类型的基本功能对作用于它们的机械力的生理水平敏感,并且这种现象总是在实验室中使用单调的机械刺激来研究。然而,体内的细胞暴露于不规则变化的刺激,这种变化可能从根本上改变所有基本的细胞功能,包括分泌,生长和死亡。揭示细胞如何处理这种生理变异性可能有助于了解细胞如何在真实的活组织中工作,以及几种主要疾病的发病机制,包括动脉粥样硬化,神经退行性疾病,代谢紊乱,衰老或癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BELA SUKI其他文献
BELA SUKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BELA SUKI', 18)}}的其他基金
A multi-scale computational model of the extracellular matrix of the lung
肺细胞外基质的多尺度计算模型
- 批准号:
10404629 - 财政年份:2018
- 资助金额:
$ 46.67万 - 项目类别:
A multi-scale computational model of the extracellular matrix of the lung
肺细胞外基质的多尺度计算模型
- 批准号:
10187641 - 财政年份:2018
- 资助金额:
$ 46.67万 - 项目类别:
Pulmonary arterial endothelial stiffness and shear-stress induced signaling
肺动脉内皮硬度和剪切应力诱导的信号传导
- 批准号:
9109028 - 财政年份:2015
- 资助金额:
$ 46.67万 - 项目类别:
Endogenous surfactant therapy for the developing lung
针对发育中肺的内源性表面活性剂疗法
- 批准号:
8370730 - 财政年份:2012
- 资助金额:
$ 46.67万 - 项目类别:
Endogenous surfactant therapy for the developing lung
针对发育中肺的内源性表面活性剂疗法
- 批准号:
8536937 - 财政年份:2012
- 资助金额:
$ 46.67万 - 项目类别:
Regulatory roles of variable mechanical stimuli in cell function
可变机械刺激对细胞功能的调节作用
- 批准号:
8500429 - 财政年份:2009
- 资助金额:
$ 46.67万 - 项目类别:
Effects of mechanical forces on lung injury and repair
机械力对肺损伤和修复的影响
- 批准号:
7527322 - 财政年份:2009
- 资助金额:
$ 46.67万 - 项目类别:
Regulatory roles of variable mechanical stimuli in cell function
可变机械刺激对细胞功能的调节作用
- 批准号:
7764563 - 财政年份:2009
- 资助金额:
$ 46.67万 - 项目类别:
Regulatory roles of variable mechanical stimuli in cell function
可变机械刺激对细胞功能的调节作用
- 批准号:
8299531 - 财政年份:2009
- 资助金额:
$ 46.67万 - 项目类别:
Effects of mechanical forces on lung injury and repair
机械力对肺损伤和修复的影响
- 批准号:
7851200 - 财政年份:2009
- 资助金额:
$ 46.67万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 46.67万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 46.67万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 46.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 46.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 46.67万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 46.67万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 46.67万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 46.67万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 46.67万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 46.67万 - 项目类别: