DEVELOPING STRATEGIES FOR JOINT GENE-ENVIRONMENT ANALYSIS
制定联合基因-环境分析策略
基本信息
- 批准号:8217748
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeBioinformaticsBiological ProcessBirthCigaretteComplexDataData AnalysesData SetDetectionDiabetes MellitusDiseaseEducational BackgroundEducational workshopEnvironmentEnvironmental Risk FactorEtiologyEvaluationFamilyGene FrequencyGenesGeneticGenomicsGenotypeGoalsGrantGuidelinesHandHeartHeart DiseasesJointsKnowledgeLightMachine LearningMeta-AnalysisMethodsNicotine DependenceOutputPathway interactionsPerformancePhenotypePublic HealthRaceRecommendationReportingResearchResearch PersonnelRiskSample SizeSensitivity and SpecificitySignal TransductionSimulateSmokeSmokerSmokingStagingStatistical MethodsTestingVariantaddictionbasecase controldatabase of Genotypes and Phenotypesdensitygene environment interactiongenetic analysisgenetic associationgenome wide association studyimprovedsextooltool developmenttrait
项目摘要
DESCRIPTION (provided by applicant): A key challenge for genetic analysis today is to account for the bulk of the phenotypic variance in complex traits that is attributable to genetic factors, but remains unexplained after multiple well-powered GWAS (Goldstein 2009; Hirschhorn 2009; Kraft and Hunter 2009). Many believe that systematically testing datasets for joint gene-environment effects (GxE) and gene-gene (GxG) effects will be essential in order to understand the genetics of complex phenotypes. However, the new era of high throughput, high-density genomic data (genotypes and sequencing) has given rise to serious computational and statistical challenges for the analysis of joint effects. The goal of this project is to develop effective strategies for the statistical analysis of joint-gene environment effects. The specific aims are to (1) identify strengths and weaknesses of multiple analytic approaches to joint GxE effects, and (2) develop new methods for coordinated meta-analysis. To accomplish Aim 1, we will systematically examine and compare traditional (e.g. regression based) and modern (e.g. partitioning, machine learning, information theoretic) analysis methods for case-control and quantitative phenotypes. The primary product will be specific guidance as to the conditions under which each method performs well. To accomplish Aim 2, we will extend recent joint-effects methods to a meta-analytic framework and develop improvements to currently used methods. For both aims, we will also analyze real data related to smoking, thereby improving our understanding of genetic and environmental contributors to smoking and addiction risk. These analyses of real data will be guided by bioinformatics-based variant prioritization. This study therefore will provide both guidance and tools needed to move the field of joint effects analysis forward. As a result, it will ultimately have a significant impact on our ability to account for the currently unexplained genetic contribution to phenotypic variance for complex traits.
PUBLIC HEALTH RELEVANCE: Many diseases that greatly impact public health (such as heart disease, diabetes, and nicotine addiction) are the result of a complex interplay between genes and environmental factors. The purpose of this grant is to improve data analysis strategies (applicable to a wide variety of diseases) for the detection of joint effects of genes and environment. We will apply these methods to analyze existing data on smokers to improve our understanding of gene-environment effects on nicotine addiction.
描述(由申请人提供):当今遗传分析的一个关键挑战是解释复杂性状中的大部分表型变异,这些变异可归因于遗传因素,但在多次有效的GWAS后仍无法解释(Goldstein 2009;赫什霍恩2009; Kraft and Hunter 2009)。许多人认为,为了了解复杂表型的遗传学,系统地测试联合基因-环境效应(GxE)和基因-基因(GxG)效应的数据集将是必不可少的。然而,高通量,高密度基因组数据(基因型和测序)的新时代已经引起了严重的计算和统计的联合效应的分析挑战。本项目的目标是为联合基因环境效应的统计分析开发有效的策略。具体目标是(1)确定联合GxE效应的多种分析方法的优点和缺点,以及(2)开发协调荟萃分析的新方法。为了实现目标1,我们将系统地检查和比较传统(例如基于回归)和现代(例如分区,机器学习,信息理论)的病例对照和定量表型分析方法。主要产品将是关于每种方法表现良好的条件的具体指导。为了实现目标2,我们将把最近的联合效应方法扩展到一个元分析框架,并对目前使用的方法进行改进。为了这两个目标,我们还将分析与吸烟有关的真实的数据,从而提高我们对吸烟和成瘾风险的遗传和环境因素的理解。这些对真实的数据的分析将由基于生物信息学的变异优先化指导。因此,这项研究将提供指导和工具,推动联合效应分析领域向前发展。因此,它最终将对我们解释目前无法解释的遗传对复杂性状表型方差的贡献的能力产生重大影响。
公共卫生关系:许多严重影响公共健康的疾病(如心脏病、糖尿病和尼古丁成瘾)是基因和环境因素之间复杂相互作用的结果。该补助金的目的是改进数据分析策略(适用于各种疾病),以检测基因和环境的联合影响。我们将应用这些方法来分析吸烟者的现有数据,以提高我们对基因-环境对尼古丁成瘾影响的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT C CULVERHOUSE其他文献
ROBERT C CULVERHOUSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT C CULVERHOUSE', 18)}}的其他基金
INTEGRATING GENETICS, ADVERSE EVENTS, AND ADHERENCE TO IMPROVE SMOKING CESSATION
整合遗传学、不良事件和坚持以改善戒烟
- 批准号:
9050661 - 财政年份:2015
- 资助金额:
$ 22.8万 - 项目类别:
DEVELOPING STRATEGIES FOR JOINT GENE-ENVIRONMENT ANALYSIS
制定联合基因-环境分析策略
- 批准号:
8330779 - 财政年份:2011
- 资助金额:
$ 22.8万 - 项目类别:
GENETIC INTERACTIONS CONTRIBUTING TO ALCOHOL AND NICOTINE DEPENDENCE
导致酒精和尼古丁依赖的基因相互作用
- 批准号:
7386896 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
GENETIC INTERACTIONS CONTRIBUTING TO ALCOHOL AND NICOTINE DEPENDENCE
导致酒精和尼古丁依赖的基因相互作用
- 批准号:
7575172 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.8万 - 项目类别:
Research Grant