Imaging retinal astrocytes, ganglion cells and axonal transport in vivo
体内视网膜星形胶质细胞、神经节细胞和轴突运输成像
基本信息
- 批准号:8114960
- 负责人:
- 金额:$ 19.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimalsAstrocytesAxonAxonal TransportAxotomyBilateralBiological AssayBlindnessBloodBlood VesselsBlood flowCell CountCellsChronicChronic DiseaseClinicalColchicineDataDiagnostic ProcedureDiseaseDisease modelElectroretinographyElementsEvaluationEventExperimental ModelsEyeFunctional disorderFutureGlaucomaGliosisGoalsHomeostasisHumanImageImageryImaging TechniquesIndividualInjection of therapeutic agentInjuryIschemiaLaboratoriesLasersLifeLongitudinal StudiesMaintenanceMeasurementMeasuresMethodologyMethodsMicrotubulesModelingNerve CrushNerve DegenerationNeurogliaNocodazoleOphthalmoscopyOptic NerveOptical Coherence TomographyOutcomePatientsPerfusionPhysiologic Intraocular PressurePhysiologicalPlayPrimatesProcessProtocols documentationRattusResearchResearch PersonnelRetinaRetinalRetinal Ganglion CellsRodentRoleScanningStagingStructureSystemTechniquesThickTissue SampleTissuesToxic effectTracerTranslatingUnited StatesVariantVisionaxonal degenerationcell injuryfollow-upganglion cellimaging modalityin vivononhuman primatenovelpressureprospectiveresponseresponse to injuryretinal nerve fiber layeruptake
项目摘要
DESCRIPTION (provided by applicant): Astrocytes are a major class of glia in the vertebrate retina. They are located primarily within the innermost retinal layers; their processes surround retinal ganglion cell (RGC) axons and axon bundles as well as all blood vessels. Because of this anatomical relationship, and a variety of physiological evidence, astrocytes are thought to have a major role in the mechanisms of retinal blood flow autoregulation, i.e. the maintenance of nearly constant blood flow in response to variations of ocular perfusion pressure. Astrocytes are also thought to play an important role in the pathophysiology of many ocular diseases by responding to a variety of insults such as ischemia, increased intraocular pressure and neuronal degeneration in a manner that has been characterized as gliosis. Hence, the ability to image astrocytes in vivo could help to elucidate aspects of disease pathophysiology. Similarly, there is evidence to suggest that RGC axonal cytoskeletal components, specifically microtubules, are disrupted during the earliest stages of response to experimental injuries such as axotomy and experimental glaucoma. This disruption is significant because microtubules are the "tracks" upon which axonal transport is driven. Thus, if microtubule abnormalities develop early in response to injury, the resultant axonal transport disruption could exacerbate the injury and inhibit protective or rescue responses from achieving full potential. The overall goal of this R21 project is to develop the methods for imaging retinal astrocytes, RGCs, their axons and axonal transport in vivo. The specific objectives are as follows: Specific Aim 1: To establish methodologies for in vivo visualization of retinal astrocytes, RGCs, their axons and active axonal transport in the rat eye. To evaluate the optimal concentration, follow-up duration and persistence of in vivo markers as well as perform histopathological studies to corroborate in vivo observations. Specific Aim 2: To evaluate potential toxicity of in vivo astrocyte markers and axonal transport tracers using sensitive measures of retinal function (electroretinography, ERG) and retinal structure (spectral domain optical coherence tomography, SDOCT), so as to assess potential for use in primate experimental models. Specific Aim 3: To evaluate the sensitivity of our newly developed methods by comparing the impact of four unilateral experimental injury models (intravitreal injection of nocodazole/colchicine to disrupt axonal microtubules and inhibit active axonal transport; acute elevation of intraocular pressure; chronic elevation of intraocular pressure; and optic nerve crush) with results obtained in bilateral control eyes. The novel methods developed in this proposal will make possible in future proposals, studies about the onset of astrocyte abnormalities and RGC axonal transport abnormalities and comparisons of those phenomena to the course of RGC and axonal degeneration in experimental models of RGC injury.
PUBLIC HEALTH RELEVANCE: Glaucoma is one of the most common causes of blindness in the United States and around the world. It is a chronic disease with no known cure. Though prospective longitudinal trials have found that treatment to lower intraocular pressure decreases the rate of progressive vision loss, some individuals continue to lose vision despite successful therapy to lower their intraocular pressure. Thus, a more thorough understanding of the events leading to damage and vision loss in glaucoma is required. The goal of this project is to develop methods for evaluating two groups of cells and aspects of their function in the living eye using specialized imaging techniques.
描述(由申请人提供):星形胶质细胞是脊椎动物视网膜中的主要神经胶质细胞。它们主要位于视网膜最内层;它们的突起围绕视网膜神经节细胞(RGC)轴突和轴突束以及所有血管。由于这种解剖学关系和各种生理学证据,星形胶质细胞被认为在视网膜血流自动调节机制中具有主要作用,即响应于眼部灌注压的变化而维持几乎恒定的血流。星形胶质细胞也被认为在许多眼部疾病的病理生理学中起重要作用,其通过以被表征为神经胶质增生的方式响应各种损伤,例如缺血、眼内压升高和神经元变性。因此,在体内成像星形胶质细胞的能力可能有助于阐明疾病的病理生理学方面。类似地,有证据表明,RGC轴突细胞骨架成分,特别是微管,在对实验性损伤如轴突切断术和实验性青光眼的反应的最早阶段被破坏。这种破坏是重要的,因为微管是轴突运输被驱动的“轨道”。因此,如果损伤后早期出现微管异常,所产生的轴突运输中断可能会加剧损伤,并抑制保护或救援反应,使其无法充分发挥潜力。R21项目的总体目标是开发视网膜星形胶质细胞、RGCs、其轴突和轴突运输的体内成像方法。具体目标如下:具体目标1:建立大鼠眼中视网膜星形胶质细胞、RGC、其轴突和主动轴突运输的体内可视化方法。评价体内标记物的最佳浓度、随访持续时间和持久性,并进行组织病理学研究以证实体内观察结果。具体目标二:使用视网膜功能(视网膜电图,ERG)和视网膜结构(光谱域光学相干断层扫描,SDOCT)的灵敏测量,评价体内星形胶质细胞标志物和轴突转运示踪剂的潜在毒性,以评估用于灵长类动物实验模型的潜力。具体目标3:通过比较四种单侧实验性损伤模型(玻璃体内注射诺考达唑/秋水仙碱以破坏轴突微管并抑制主动轴突运输;急性眼内压升高;慢性眼内压升高;和视神经挤压)与双侧对照眼结果的影响,评价我们新开发方法的灵敏度。本提案中开发的新方法将使未来的提案成为可能,研究星形胶质细胞异常和RGC轴突运输异常的发病,并将这些现象与RGC损伤实验模型中RGC和轴突变性的过程进行比较。
青光眼是美国和世界上最常见的致盲原因之一。这是一种慢性病,没有已知的治疗方法。尽管前瞻性纵向试验发现,降低眼内压的治疗可以降低进行性视力丧失的发生率,但有些人尽管成功地降低了眼内压,但仍会继续丧失视力。因此,需要对导致青光眼损害和视力丧失的事件有更全面的了解。该项目的目标是开发使用专门的成像技术评估两组细胞及其在活体眼睛中功能的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRAD FORTUNE其他文献
BRAD FORTUNE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRAD FORTUNE', 18)}}的其他基金
Retinal circuit disassembly in primate glaucoma
灵长类青光眼的视网膜电路拆卸
- 批准号:
10639949 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Overcoming Barriers to retinal ganglion cell replacement in experimental glaucoma
克服实验性青光眼视网膜神经节细胞替代的障碍
- 批准号:
10875042 - 财政年份:2021
- 资助金额:
$ 19.13万 - 项目类别:
Overcoming Barriers to retinal ganglion cell replacement in experimental glaucoma
克服实验性青光眼视网膜神经节细胞替代的障碍
- 批准号:
10330206 - 财政年份:2021
- 资助金额:
$ 19.13万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
10004040 - 财政年份:2019
- 资助金额:
$ 19.13万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
10228613 - 财政年份:2019
- 资助金额:
$ 19.13万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
10457862 - 财政年份:2019
- 资助金额:
$ 19.13万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
9803604 - 财政年份:2019
- 资助金额:
$ 19.13万 - 项目类别:
Imaging retinal astrocytes, ganglion cells and axonal transport in vivo
体内视网膜星形胶质细胞、神经节细胞和轴突运输成像
- 批准号:
8306681 - 财政年份:2011
- 资助金额:
$ 19.13万 - 项目类别:
Axonal cytoskeletal changes in experimental glaucoma
实验性青光眼的轴突细胞骨架变化
- 批准号:
7921993 - 财政年份:2009
- 资助金额:
$ 19.13万 - 项目类别:
Axonal cytoskeletal changes in experimental glaucoma
实验性青光眼的轴突细胞骨架变化
- 批准号:
8129511 - 财政年份:2009
- 资助金额:
$ 19.13万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 19.13万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 19.13万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 19.13万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




