Overcoming Barriers to retinal ganglion cell replacement in experimental glaucoma
克服实验性青光眼视网膜神经节细胞替代的障碍
基本信息
- 批准号:10875042
- 负责人:
- 金额:$ 9.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAnatomyAstrocytesAxonBiologyBlindnessBrainCell Differentiation processCell LineCell SurvivalCellsCharacteristicsCommunitiesComplexData SetDevelopmentDiseaseDonor personElectrophysiology (science)EngraftmentEnvironmentExperimental ModelsEyeFRAP1 geneFutureGene Expression ProfileGeneticGlaucomaGoalsHumanImmunosuppressive AgentsKnowledgeModelingMolecularNerve RegenerationNeurogliaNeuronsOptic NerveOutputPersonsProcessRejuvenationResearchResearch PersonnelResourcesRetinaRetinal DegenerationRetinal Ganglion CellsSeriesSignal TransductionSite-Directed MutagenesisTestingTherapeuticThrombospondinsTranslationsTransplantationViral VectorVision DisordersVisualVisual SystemVisual impairmentVisually Impaired PersonsWorkcell injurycellular developmentclinically relevantdesigner receptors exclusively activated by designer drugsexperimental studyganglion cellglial activationimprovedinduced pluripotent stem cellinnovationneuroinflammationneuronal replacementneurotoxicnovelnovel strategiesoptic nerve disorderoverexpressionreceptorrepairedretina transplantationretinal ganglion cell degenerationretinal neuronsight restorationsoundsynaptogenesistooltranslational approachtransmission process
项目摘要
Project Summary / Abstract
Retinal ganglion cells (RGCs) are the output neurons of the retina responsible for transmitting information about the visual world from the eye to the brain. Thus, RGC damage and loss, a characteristic of many disorders of the visual system, has the direct consequence of vision impairment, or blindness when RGC loss is more severe. Our translation-enabling approach builds on a very well-established, thoroughly characterized and validated experimental glaucoma (EG) model. This affords our study the distinct advantage of conducting each of the proposed hypothesis-driven experiments within the framework of a reliable model of RGC degeneration that closely recapitulates the anatomical changes and pathophysiological processes observed in human glaucoma. Moreover, our preliminary results establish the feasibility of our approach, demonstrating that we have already achieved successful transplantation of human induced pluripotent stem cell (iPSC)-derived RGCs into the EG retina, while also characterizing major barriers that require targeted solutions. Hence, we propose to employ a series of manipulations to both donor RGCs and the recipient EG retina in order to overcome the existing barriers to RGC replacement and thus make a giant leap forward toward realization of the audacious goal to restore vision in persons blinded by glaucoma or other optic neuropathies. Each of our Aims is soundly based on existing knowledge of the relevant biology and will lead to meaningful enhancement of donor RGC survival, integration, and function in the glaucomatous EG retina. We will utilize rigorous quantitative electrophysiological and anatomical assessments for testing the hypothesis at the core of each Aim. Aim 1 will target neuroinflammation to improve the long-term survival of transplanted RGCs. We will create hypoimmunogenic iPSCs and manipulate the host retinal environment using systemic immunosuppressive agents or inhibition of microglial activation. Aim 2 will augment donor cell survival and integration through modulation of cellular age, with host retinal glia experimentally induced to an immature state through cellular rejuvenation. Aim 3 will enhance the connectivity and axon outgrowth of donor RGCs in the retina. Donor RGCs will be edited to express hM3Dq DREADD receptors for chemogenetic stimulation and mTOR activators. Thrombospondin will be overexpressed in host retinal astrocytes and donor RGCs, leveraging astrocyte-derived factors that promote axonal outgrowth and synaptogenesis. Together, these Aims will generate a wealth of knowledge and resources for the scientific community and bring us significantly closer to the reality of vision restoration through RGC replacement.
项目摘要 /摘要
视网膜神经节细胞(RGC)是电网的输出神经元,负责从眼睛传输有关视觉世界的信息。因此,RGC损伤和损失是视觉系统许多疾病的特征,当RGC丢失更为严重时,视力障碍或失明的直接结果。我们的增强翻译方法建立在一个完善的,彻底的特征和验证的实验性青光眼(EG)模型的基础上。这为我们的研究提供了独特的优势,即在可靠的RGC变性模型的框架内进行每个提出的假设驱动的实验,该模型紧密概述了人类青光眼中观察到的解剖学变化和病理生理过程。此外,我们的初步结果确定了我们的方法的可行性,表明我们已经成功地移植了人类诱导的多能干细胞(IPSC)衍生的RGC进入EG视网膜,同时还表征了需要有针对性解决方案的主要障碍。因此,我们建议对捐助者RGC和受体EG EG EG进行一系列操纵,以克服现有的RGC替换障碍,从而实现巨大的飞跃,朝着实现大胆的目标,以恢复因Glaucoma或其他Optic Neuropaties而蒙蔽的人的视力。我们的每个目标都基于对相关生物学的现有知识,并将导致捐赠者RGC生存,整合和功能的有意义的增强。我们将利用严格的定量电生理和解剖学评估来测试每个目标核心的假设。 AIM 1将靶向神经炎症,以改善移植RGC的长期存活。我们将使用全身免疫抑制剂或抑制小胶质激活来创建低免疫原性IPSC并操纵宿主视网膜环境。 AIM 2将通过调节细胞年龄来增强供体细胞的存活和整合,宿主视网膜神经胶质通过细胞恢复实验诱导到不成熟状态。 AIM 3将增强视网膜中供体RGC的连通性和轴突生长。供体RGC将被编辑以表达用于化学刺激和MTOR激活剂的HM3DQ Dreadd受体。血小板传播将在宿主的视网膜星形胶质细胞和供体RGC中过表达,从而利用星形胶质细胞衍生的因素促进轴突生长和突触发生。这些目标共同为科学界创造了丰富的知识和资源,并通过RGC替换使我们更加接近视力恢复的现实。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRAD FORTUNE其他文献
BRAD FORTUNE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRAD FORTUNE', 18)}}的其他基金
Retinal circuit disassembly in primate glaucoma
灵长类青光眼的视网膜电路拆卸
- 批准号:
10639949 - 财政年份:2023
- 资助金额:
$ 9.34万 - 项目类别:
Overcoming Barriers to retinal ganglion cell replacement in experimental glaucoma
克服实验性青光眼视网膜神经节细胞替代的障碍
- 批准号:
10330206 - 财政年份:2021
- 资助金额:
$ 9.34万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
10004040 - 财政年份:2019
- 资助金额:
$ 9.34万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
10228613 - 财政年份:2019
- 资助金额:
$ 9.34万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
10457862 - 财政年份:2019
- 资助金额:
$ 9.34万 - 项目类别:
Advancing OCT evaluation to reveal early-stage changes in glaucoma
推进 OCT 评估以揭示青光眼的早期变化
- 批准号:
9803604 - 财政年份:2019
- 资助金额:
$ 9.34万 - 项目类别:
Imaging retinal astrocytes, ganglion cells and axonal transport in vivo
体内视网膜星形胶质细胞、神经节细胞和轴突运输成像
- 批准号:
8114960 - 财政年份:2011
- 资助金额:
$ 9.34万 - 项目类别:
Imaging retinal astrocytes, ganglion cells and axonal transport in vivo
体内视网膜星形胶质细胞、神经节细胞和轴突运输成像
- 批准号:
8306681 - 财政年份:2011
- 资助金额:
$ 9.34万 - 项目类别:
Axonal cytoskeletal changes in experimental glaucoma
实验性青光眼的轴突细胞骨架变化
- 批准号:
7921993 - 财政年份:2009
- 资助金额:
$ 9.34万 - 项目类别:
Axonal cytoskeletal changes in experimental glaucoma
实验性青光眼的轴突细胞骨架变化
- 批准号:
8129511 - 财政年份:2009
- 资助金额:
$ 9.34万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 9.34万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 9.34万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 9.34万 - 项目类别:
Potential of tissue kallikreins as therapeutic targets for neuropsychiatric lupus
组织激肽释放酶作为神经精神狼疮治疗靶点的潜力
- 批准号:
10667764 - 财政年份:2023
- 资助金额:
$ 9.34万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 9.34万 - 项目类别: