Semiparametric Methods for Efficiency-Adjusted Relative qRT-PCR Quantification
用于效率调整的相对 qRT-PCR 定量的半参数方法
基本信息
- 批准号:8195291
- 负责人:
- 金额:$ 20.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-23 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsBiochemicalBiological AssayBiological MarkersBloodCancer PatientChemistryColorectal CancerComplementary DNADataData AnalysesData SetDatabasesDetectionDevelopmentDiagnosticEquationEquipmentFluorescenceFoundationsFresh TissueGenesGoalsGrowthHarvestKineticsKnowledgeMalignant NeoplasmsMethodsModelingModificationMolecularOutcomePhaseProceduresPublishingReactionRecording of previous eventsRelative (related person)Research PersonnelReverse Transcriptase Polymerase Chain ReactionSerumSimulateTranscriptTumor BurdenWorkbaseclinical practicedensityflexibilityimprovedinterestlymph nodesnoveloutcome forecastpresent valuesimulationtool
项目摘要
DESCRIPTION (provided by applicant): Quantitative RT-PCR is widely used for molecular diagnostics and evaluating prognosis in cancer. While detection of biomarkers (presence vs. absent) is becoming a part of routing clinical practice, the actual quantification of tumor burden, for example, in lymph nodes or serum is still in developmental phase. In order for such actual quantification to become clinically useful, it is necessary to have in place data analysis methods that would provide high accuracy and precision of relative qRT-PCR quantification of low abundance transcripts across various equipment platforms and chemistries used for qRT-PCR assay. The overall goal of this project is to develop and validate new and universal methods of efficiency-adjusted relative qRT-PCR quantification that would be universally applicable to various qRT-PCR equipment platforms and chemistries. New quantification methods will be based on novel semiparametric models for qRT-PCR kinetic data that flexibly represent amplification history using smoothing splines and incorporate the model for dynamics of qRT-PCR efficiency through the penalty defined by suitable differential equation. The proposed studies will (1) investigate the utility of Michaelis-Menten model and its extensions for describing dynamics of qRT-PCR efficiency; (2) develop semi- parametric models for qRT-PCR kinetic data incorporating the dynamics of PCR efficiency using the profiled penalty estimation approach in functional data analysis; (3) develop new universal methods for efficiency-adjusted relative qRT-PCR quantification based on the proposed semi-parametric models; (4) compare accuracy and precision of the new and established methods using simulations and wide range of kinetic qRT-PCR data publicly available and collected during the course of two large NCI sponsored studies of GUYC2C in fresh tissue and blood from colorectal cancer patients.
PUBLIC HEALTH RELEVANCE: Quantitative RT-PCR is now widely used for molecular diagnostics and evaluating prognosis in cancer. While detection of biomarkers (presence vs. absent) is becoming a part of routing clinical practice, the methods for actual quantification (estimation of copy number) of tumor burden still need improvement. The overall goal of this project is to develop and validate new and universal methods of actual relative qRT-PCR quantification of low expression cancer biomarkers that would be universally applicable to various qRT-PCR equipment platforms and chemistries.
描述(由申请人提供):定量RT-PCR广泛用于癌症的分子诊断和预后评估。虽然生物标志物的检测(存在与不存在)正在成为常规临床实践的一部分,但肿瘤负荷的实际定量(例如,淋巴结或血清中的肿瘤负荷)仍处于开发阶段。为了使这种实际定量在临床上有用,有必要具有适当的数据分析方法,该方法将在用于qRT-PCR测定的各种设备平台和化学品中提供低丰度转录物的相对qRT-PCR定量的高准确度和精确度。 本项目的总体目标是开发和验证效率调整相对qRT-PCR定量的新的通用方法,这些方法普遍适用于各种qRT-PCR设备平台和化学品。新的定量方法将基于qRT-PCR动力学数据的新型半参数模型,该模型使用平滑样条灵活地表示扩增历史,并通过适当微分方程定义的罚分纳入qRT-PCR效率动力学模型。 所提出的研究将(1)调查Michaelis-Menten模型及其扩展用于描述qRT-PCR效率动态的效用;(2)使用功能数据分析中的轮廓罚估计方法开发用于qRT-PCR动力学数据的半参数模型,该半参数模型结合PCR效率的动态;(3)基于所提出的半参数模型开发新的用于效率调整的相对qRT-PCR定量的通用方法;(4)使用模拟和广泛的动力学qRT-PCR数据比较新的和已建立的方法的准确度和精确度,所述动力学qRT-PCR数据公开可用并且在来自结直肠癌患者的新鲜组织和血液中的GUYC 2C的两个大型NCI赞助的研究的过程中收集。
公共卫生相关性:定量RT-PCR现已广泛用于癌症的分子诊断和预后评估。虽然生物标志物的检测(存在与不存在)正在成为常规临床实践的一部分,但用于肿瘤负荷的实际定量(估计拷贝数)的方法仍需要改进。本项目的总体目标是开发和验证新的通用方法,用于低表达癌症生物标志物的实际相对qRT-PCR定量,这些方法普遍适用于各种qRT-PCR设备平台和化学品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inna Chervoneva其他文献
Inna Chervoneva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inna Chervoneva', 18)}}的其他基金
WNT pathway-driven anti-estrogen therapy resistance in breast cancer
WNT 通路驱动的乳腺癌抗雌激素治疗耐药
- 批准号:
10606977 - 财政年份:2022
- 资助金额:
$ 20.23万 - 项目类别:
Statistical Methods For Quantitative Immunohistochemistry Biomarkers
定量免疫组织化学生物标志物的统计方法
- 批准号:
10331802 - 财政年份:2019
- 资助金额:
$ 20.23万 - 项目类别:
Statistical Methods For Quantitative Immunohistochemistry Biomarkers
定量免疫组织化学生物标志物的统计方法
- 批准号:
10083722 - 财政年份:2019
- 资助金额:
$ 20.23万 - 项目类别:
Statistical Methods For Quantitative Immunohistochemistry Biomarkers
定量免疫组织化学生物标志物的统计方法
- 批准号:
10559505 - 财政年份:2019
- 资助金额:
$ 20.23万 - 项目类别:
Semiparametric Methods for Efficiency-Adjusted Relative qRT-PCR Quantification
用于效率调整的相对 qRT-PCR 定量的半参数方法
- 批准号:
8288712 - 财政年份:2011
- 资助金额:
$ 20.23万 - 项目类别:
Statistical Functional Data Analysis Models of Glucose and Insulin Kinetics
葡萄糖和胰岛素动力学的统计功能数据分析模型
- 批准号:
7588258 - 财政年份:2009
- 资助金额:
$ 20.23万 - 项目类别:
Statistical Functional Data Analysis Models of Glucose and Insulin Kinetics
葡萄糖和胰岛素动力学的统计功能数据分析模型
- 批准号:
7777399 - 财政年份:2009
- 资助金额:
$ 20.23万 - 项目类别:
Robust Hierarchical Finite Mixture Modeling of Collagen Fibril Diameters
胶原原纤维直径的鲁棒分层有限混合建模
- 批准号:
7388220 - 财政年份:2007
- 资助金额:
$ 20.23万 - 项目类别:
Robust Hierarchical Finite Mixture Modeling of Collagen Fibril Diameters
胶原原纤维直径的鲁棒分层有限混合建模
- 批准号:
7258275 - 财政年份:2007
- 资助金额:
$ 20.23万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.23万 - 项目类别:
Research Grant