Pattern array: in vivo mining for novel psychoactive drug discovery

模式阵列:用于新型精神活性药物发现的体内挖掘

基本信息

  • 批准号:
    8018156
  • 负责人:
  • 金额:
    $ 28.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Over one-quarter of the adult population in the United States suffers from a diagnosable mental disorder in a given year and an astonishing 41% of 12th graders report some lifetime use of illicit drugs. Despite the societal and personal burden that psychiatric illness presents and the substantial investment in psychiatric drug discovery (albeit significantly less in drug abuse) there is a chronic shortfall in innovative psychiatric drugs. A primary stumbling block in psychiatric drug development is thought to be in the animal models used to screen drugs for treatment efficacy and the target-centric drug discovery approach. The focus on specific mechanistic interventions will prove unsatisfactory if the underlying pathology does not rest in a restricted biological entity but rather in a `system' response to the drug. Data mining techniques are increasingly used to discover predictive in vitro system profiles for a cancer or toxicological responses. Likewise, a system-based orientation to in vivo pharmacology has been suggested as a way to transform psychiatric drug discovery. The purpose of this application is to fully develop a novel in vivo data mining strategy for psychiatric drug research and development we have termed Pattern Array (PA). The behavioral context for PA is exploratory behavior. Extensive ethological, pharmacological and behavior genetics studies in our lab and others have shown that exploratory behavior is i) highly heritable, likely reflecting `hard-wired' brain systems, ii) amenable to mathematical description and high-throughput and iii) information-rich, generating ~105 relevant data points per animal. Our working hypothesis is that the effects of drugs on this `hard-wired' system are also amenable to algorithmic structuring and identification. The strategy we are proposing is certainly unconventional, however its foundation is well-grounded empirically and shown to work in preliminary studies. We propose to establish PA via three specific aims. First, we will develop a high quality database derived from five main therapeutic target areas: antipsychotics, antidepressants, anxiolytics, drugs of abuse and drug abuse therapeutics. Within each target area a range of subclasses and mechanisms are represented. Second, the strong core database and experience with new drug classes will provide the critical mass to enable us to boost the power, generality and reliability of PA through feature enhancements and statistical implementation. Third, we will utilize PA to mine potential behavioral "endpoints" (~100,000) and identifying those that best characterize a drug or drug class. These endpoints represent complex movement patterns, algorithmically defined as different combinations of several ethologically-relevant variables. The result of this last specific aim will be to provide a set of in vivo behavioral `predictors' for a broad range of compounds with psychoactive properties and provide a template for use in screening novel compounds. PA could then be used to screen novel pharmacotherapeutics for their similarity to proven therapeutics, thus providing a relatively rapid means to identify new molecular entities with unique therapeutic utility. PUBLIC HEALTH RELEVANCE: There is a significant decline in psychiatric drug development designed to treat the considerable portion of the US population that suffers from a diagnosable mental disorder or drug abuse. The purpose of this application is to fully develop an unconventional, novel in vivo data mining strategy for the behavioral effects of psychotherapeutic drugs termed Pattern Array (PA). The strategy outlined in this application could be used to screen novel compounds for their similarity to proven therapeutics, thus providing a relatively rapid means to identify new molecular entities with unique therapeutic utility.
在美国,超过四分之一的成年人在某一年内患有可诊断的精神障碍,令人惊讶的是,41%的12年级学生报告终生使用非法药物。尽管精神疾病带来了社会和个人负担,而且在精神药物发现方面投入了大量资金(尽管在药物滥用方面投入少得多),但创新精神药物长期短缺。精神药物开发的主要障碍被认为是用于筛选药物治疗效果的动物模型和以靶点为中心的药物发现方法。如果潜在的病理学不在于一个受限制的生物实体,而在于对药物的“系统”反应,那么对具体机制干预的关注将证明是不能令人满意的。数据挖掘技术越来越多地用于发现癌症或毒理学反应的预测性体外系统概况。同样,一个系统为基础的方向,在体内药理学已被建议作为一种方式来改变精神药物的发现。本申请的目的是充分开发一种新的体内数据挖掘策略,用于精神药物的研究和开发,我们称之为模式阵列(PA)。PA的行为背景是探索性行为。在我们实验室和其他实验室进行的广泛的行为学、药理学和行为遗传学研究表明,探索行为是i)高度遗传的,可能反映了“硬连线”的大脑系统,ii)适合数学描述和高通量,iii)信息丰富,每只动物产生约105个相关数据点。我们的工作假设是,药物对这个“硬连线”系统的影响也服从于算法结构和识别。我们提出的策略当然是非传统的,但它的基础是有充分的经验基础,并在初步研究中显示出工作。我们建议通过三个具体目标建立巴勒斯坦权力机构。首先,我们将开发一个高质量的数据库,该数据库来自五个主要的治疗目标领域:抗精神病药、抗抑郁药、抗焦虑药、滥用药物和药物滥用治疗。在每个目标领域内,都有一系列的子类和机制。其次,强大的核心数据库和新药类别的经验将提供临界质量,使我们能够通过功能增强和统计实施来提高PA的功能,通用性和可靠性。第三,我们将利用PA挖掘潜在的行为“端点”(约100,000),并确定最能表征药物或药物类别的端点。这些终点代表复杂的运动模式,在算法上定义为几个行为学相关变量的不同组合。这最后一个具体目标的结果将是为具有精神活性特性的广泛化合物提供一组体内行为“预测因子”,并提供用于筛选新化合物的模板。PA然后可以用于筛选新的药物治疗剂,因为它们与已证实的治疗剂相似,从而提供了一种相对快速的手段来鉴定具有独特治疗效用的新分子实体。公共卫生关系:有一个显着下降的精神药物的开发,旨在治疗相当一部分美国人口患有可诊断的精神障碍或药物滥用。本申请的目的是充分开发一种非传统的,新颖的体内数据挖掘策略的行为影响的精神治疗药物称为模式阵列(PA)。本申请中概述的策略可用于筛选与已证实的治疗剂相似的新化合物,从而提供相对快速的手段来鉴定具有独特治疗效用的新分子实体。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mining mouse behavior for patterns predicting psychiatric drug classification.
  • DOI:
    10.1007/s00213-013-3230-6
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kafkafi N;Mayo CL;Elmer GI
  • 通讯作者:
    Elmer GI
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory I Elmer其他文献

Gregory I Elmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory I Elmer', 18)}}的其他基金

Adolescent trauma produces enduring disruptions in sleep architecture that lead to increased risk for adult mental illness
青少年创伤会对睡眠结构产生持久的破坏,从而导致成人精神疾病的风险增加
  • 批准号:
    10730872
  • 财政年份:
    2023
  • 资助金额:
    $ 28.81万
  • 项目类别:
RMTg circuitry mediates psychiatric consequences of early life-threatening trauma
RMTg 回路介导早期危及生命的创伤的精神后果
  • 批准号:
    9436843
  • 财政年份:
    2017
  • 资助金额:
    $ 28.81万
  • 项目类别:
Anesthetic-induced burst suppression as a novel antidepressant mechanism
麻醉引起的爆发抑制作为一种新型抗抑郁机制
  • 批准号:
    9283616
  • 财政年份:
    2016
  • 资助金额:
    $ 28.81万
  • 项目类别:
Habenulomesencephalic pathway in aversion, reward and depression
缰核中脑通路在厌恶、奖赏和抑郁中的作用
  • 批准号:
    8617302
  • 财政年份:
    2012
  • 资助金额:
    $ 28.81万
  • 项目类别:
Conditional Dicer1 manipulation to study miRNA involvement in opioid addiction
条件性 Dicer1 操作研究 miRNA 与阿片类药物成瘾的关系
  • 批准号:
    8447414
  • 财政年份:
    2012
  • 资助金额:
    $ 28.81万
  • 项目类别:
Habenulomesencephalic pathway in aversion, reward and depression
缰核中脑通路在厌恶、奖赏和抑郁中的作用
  • 批准号:
    8432019
  • 财政年份:
    2012
  • 资助金额:
    $ 28.81万
  • 项目类别:
Conditional Dicer1 manipulation to study miRNA involvement in opioid addiction
条件性 Dicer1 操作研究 miRNA 与阿片类药物成瘾的关系
  • 批准号:
    8322268
  • 财政年份:
    2012
  • 资助金额:
    $ 28.81万
  • 项目类别:
Habenulomesencephalic pathway in aversion, reward and depression
缰核中脑通路在厌恶、奖赏和抑郁中的作用
  • 批准号:
    8297232
  • 财政年份:
    2012
  • 资助金额:
    $ 28.81万
  • 项目类别:
Pattern array: in vivo mining for novel psychoactive drug discovery
模式阵列:用于新型精神活性药物发现的体内挖掘
  • 批准号:
    7754037
  • 财政年份:
    2009
  • 资助金额:
    $ 28.81万
  • 项目类别:
Pattern array: in vivo mining for novel psychoactive drug discovery
模式阵列:用于新型精神活性药物发现的体内挖掘
  • 批准号:
    7564430
  • 财政年份:
    2009
  • 资助金额:
    $ 28.81万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 28.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了