Molecular Mechanisms of Auditory Transduction
听觉传导的分子机制
基本信息
- 批准号:8080360
- 负责人:
- 金额:$ 34.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1984
- 资助国家:美国
- 起止时间:1984-09-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationActinsAminoglycosidesAmplifiersAntibodiesAuditoryBindingBiological AssayBuffersCellsCochleaConfocal MicroscopyCytoplasmDependenceDiffusionDyesElectronsEvolutionFeedbackFrequenciesGated Ion ChannelHairHair CellsHeightImageIndividualInheritedIon ChannelKinociliumKnock-in MouseLabyrinthLasersLearningLight MicroscopeLinkLocationMapsMeasuresMechanicsMicroscopicMicroscopyModelingMolecularMotorMovementMusMutateMyosin ATPaseOpticsPharmaceutical PreparationsPhysiologic pulsePositioning AttributeProbabilityProcessProductionProteinsRanaRelative (related person)ResearchResolutionRunningScanning Electron MicroscopySignal TransductionSiteSpeedStereociliumTechniquesWorkage relatedanalogbasedeafnessdesignfiberglassflexibilityhuman CDH23 proteinimaging modalitylink proteinmillisecondnanometernovelpatch clamppublic health relevancerelating to nervous systemresearch studysensory discriminationsoundspecies differencetwo-photonultraviolet
项目摘要
DESCRIPTION (provided by applicant): This work is designed to understand the force-gated transduction channels in the hair cells of the inner ear, which perform the fundamental conversion of sound into a neural signal. The two aims of the research are to learn how these channels are positioned to respond to force, and also how they produce a feedback force that amplifies the incoming sound. Each hair cell has a bundle of actin-based stereocilia arranged with increasing heights; each stereocilium of a cell extends a filamentous 'tip link' to the next taller stereocilium. Movement of the bundle tightens tip links; they in turn pull open force-gated ion channels that open to depolarize the cell. Yet it is not clear where the transduction channels are in relation to the tip links, and so we cannot begin to understand in detail the mechanical linkage that activates them. We will use three new optical techniques to locate the transduction channels. One is swept-field confocal microscopy, which offers temporal resolution of milliseconds. A second is 2P-STED microscopy, a newly developed "super-resolution" microscopy that offers spatial resolution three-to-five-fold better than conventional light microscopes. Both will localize transduction channels with the use of dyes that detect Ca2+ entering through the channels. A third is STORM microscopy, another super-resolution technique which can observe the individual tip links that are connected to the channels and detect their angle and polarity. The opening and closing of transduction channels involves protein movements on the scale of a few nanometers, but these movements can move the entire hair bundle of a hair cells by tens of nanometers. Just milliseconds after transduction channels open, the Ca2+ entering through them causes them to close again, a process termed fast adaptation. Channel closure terminates the inward current, observed with a patch-clamp amplifier, but it often produces a fast backwards movement of the hair bundle, observed with a glass fiber probe. Movements associated with channel closure, although minute, have been proposed to underlie an active mechanical feedback in the mammalian cochlea that amplifies the incoming sound by 100-fold or more, and that creates an exceptionally sharp frequency tuning which enables sensory discrimination of tones. Yet it is not known how the basic force production works, i.e., how Ca2+ closes channels. We will use flexible glass fiber probes to stimulate hair bundles and to record their movement, and will control Ca2+ in the hair bundle directly by photolytically releasing it with a pulsed laser. Ca2+ will be released with the bundle biased to different positions, to map out the dependence of Ca2+-induced movement on position. The results will be compared to the predictions of each of four different models for Ca2+ action. A clear understanding of how Ca2+ produces fast adaptation can be incorporated into models for how cochlear amplification works.
PUBLIC HEALTH RELEVANCE: These experiments are aimed at resolving two very fundamental issues in auditory transduction. First, we need to understand the location of mechanotransduction channels for further studies of the transduction apparatus, in particular to identify new proteins that-like the tip-link proteins-may be mutated in inherited deafness. Second, we need to understand the active mechanical feedback by hair cells that is essential for cochlear tuning, so as to understand the perceptual deficits produced by age-related loss of hair cells.
描述(由申请人提供):这项工作旨在了解内耳毛细胞中的力门控转导通道,该通道执行声音到神经信号的基本转换。研究的两个目的是了解这些通道如何定位以响应力,以及它们如何产生放大传入声音的反馈力。每个毛细胞有一束肌动蛋白为基础的静纤毛排列与增加的高度;每个静纤毛的细胞延伸丝状的“尖端链接”到下一个更高的静纤毛。纤维束的运动会使尖端连接收紧,它们反过来又会打开力门控离子通道,从而打开细胞。然而,目前尚不清楚转导通道与尖端连接的关系,因此我们无法开始详细了解激活它们的机械连接。我们将使用三种新的光学技术来定位转导通道。一种是扫描场共聚焦显微镜,它提供毫秒级的时间分辨率。第二种是2 P-STED显微镜,这是一种新开发的“超分辨率”显微镜,其空间分辨率比传统光学显微镜高出三到五倍。两者都将使用检测通过通道进入的Ca 2+的染料来定位转导通道。第三种是STORM显微镜,这是另一种超分辨率技术,可以观察连接到通道的各个尖端链接,并检测它们的角度和极性。 转导通道的打开和关闭涉及几纳米尺度的蛋白质运动,但这些运动可以使毛细胞的整个毛束移动数十纳米。在转导通道打开后的几毫秒内,通过它们进入的Ca 2+会导致它们再次关闭,这一过程称为快速适应。通道关闭终止了内向电流,用膜片钳放大器观察到,但它经常产生快速向后运动的毛束,用玻璃纤维探针观察到。与通道关闭相关的运动,虽然很微小,但已经被提出为哺乳动物耳蜗中的主动机械反馈的基础,该反馈将传入的声音放大100倍或更多,并且产生异常尖锐的频率调谐,使得能够对音调进行感官辨别。然而,人们不知道基本的力生产是如何工作的,即,Ca 2+如何关闭通道 我们将使用柔性玻璃纤维探针刺激发束并记录它们的运动,并将通过用脉冲激光光解释放发束中的Ca 2+来直接控制发束中的Ca 2+。Ca 2+将随着束偏向不同位置而释放,以绘制出Ca 2+诱导的运动对位置的依赖性。将结果与四种不同的Ca 2+作用模型的预测进行比较。对Ca 2+如何产生快速适应的清晰理解可以纳入耳蜗放大如何工作的模型中。
公共卫生相关性:这些实验旨在解决听觉传导中的两个非常基本的问题。首先,我们需要了解机械转导通道的位置,以便进一步研究转导装置,特别是识别新的蛋白质,如tip-link蛋白质,可能在遗传性耳聋中发生突变。其次,我们需要了解毛细胞的主动机械反馈,这对耳蜗调谐至关重要,从而了解与年龄相关的毛细胞损失所产生的感知缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID P COREY其他文献
DAVID P COREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID P COREY', 18)}}的其他基金
Development of Gene Therapy for Hereditary Deafness using Rational Protein Engineering
利用合理蛋白质工程开发遗传性耳聋基因疗法
- 批准号:
10649587 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 34.87万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 34.87万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 34.87万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 34.87万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 34.87万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 34.87万 - 项目类别: