Function of Mipp1 in Regulating Drosophila Trachea Tube Size and Branch Migration

Mipp1在调节果蝇气管管大小和分支迁移中的作用

基本信息

  • 批准号:
    8089239
  • 负责人:
  • 金额:
    $ 4.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

Tube formation is an important process in the development of many organs, including the lung, kidney, intestine, and heart, so it is critical to understand this process at both the cellular and molecular level. The goal of this proposal is to elucidate the role of multiple inositol polyphosphate phosphatase (Mipp1) in Drosophila trachea development, which is one of the best model systems for studying tubular organogenesis. Mipps are the main enzymes to dissipate the high order inositol polyphosphates (InsP), which are important second messengers for many important cellular processes. The biological function of Mipps is very poorly understood. mipp1 was identified as a downstream target of Trachealess (Trh), a critical transcription regulating the entire process of trachea formation. A knockout of mipp1 was successfully generated and its phenotypic characterization revealed significant dorsal trunk elongation and ganglionic branch mismigration defects. These preliminary results lead to the hypothesis that Mipp1 regulates the production of molecules involved in limiting dorsal trunk length and directing ganglionic branch migration. Part A of specific aim 1 will define the role of Mipp1 in tracheal development by analyzing the tracheal phenotypes associated with the loss and overexpression of Mipp1. Part B of specific aim 1 will reveal whether Mipp1 functions through the known pathways that affect tracheal dorsal trunk tube size control and ganglionic branch migration or through a novel pathway(s). Specific aim 2 will test if Drosophila Mipp2 compensates for Mipp1 activity by comparing the tracheal phenotypes of mipp1 knockout and mipp1 mipp2 double null mutants. Specific aim 3 will reveal whether Mipp1 functions through the generation of InsP4, InsP3 from InsP5 and InsP6 or through the generation of 2- phosphogylcerate from 2, 3-biphosphoglycerate to regulate tube size control and branch migration. The genes encoding enzymes in parallel pathways will be manipulated to build up Mipp1 substrates or products to learn which molecules are relevant to the tracheal defects observed in mipp1mutants. The analysis of Mipp function in the very tractable system of the Drosophila embryonic trachea is likely to provide insight into how this highly conserved family of proteins functions in higher animals.
管的形成是许多器官发育的重要过程,包括肺、肾、肠和心脏,因此在细胞和分子水平上了解这一过程是至关重要的。本研究的目的是阐明多重肌醇多聚磷酸酶(Mipp1)在果蝇气管发育中的作用,这是研究管状器官发生的最佳模型系统之一。MIPPS是消耗高阶肌醇多磷酸(INSP)的主要酶,而INSP是许多重要细胞过程的重要第二信使。目前对Mipps的生物学功能知之甚少。Mipp1被确定为TracHealth ess(TRH)的下游靶标,TRH是调节气管形成整个过程的关键转录。Mipp1基因被成功地敲除,其表型特征显示明显的背干延长和神经节支错位移动缺陷。这些初步结果导致假设,Mipp1调节参与限制背干长度和指导神经节分支迁移的分子的产生。具体目标1的A部分将通过分析与Mipp1的缺失和过表达相关的气管表型来定义Mipp1在气管发育中的作用。具体目标1的B部分将揭示Mipp1是通过影响气管背干管大小控制和神经节支迁移的已知途径发挥作用,还是通过新的途径发挥作用(S)。特殊目的2将通过比较mipp1基因敲除和mipp1 mipp2双零突变的气管表型来测试果蝇mipp2是否补偿mipp1的活性。具体目标3将揭示Mipp1是通过由InsP5和InsP6产生InsP4、InsP3,还是通过由2,3-双磷酸甘油酸酯产生2-磷酸甘油酸酯来调节管径控制和分支迁移。平行通路中编码酶的基因将被操纵来构建Mipp1底物或产物,以了解哪些分子与在mipp1突变体中观察到的气管缺陷有关。对果蝇胚胎气管这个非常容易处理的系统中MIPP功能的分析可能会为深入了解这一高度保守的蛋白质家族在高等动物中的功能提供线索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yim Ling Cheng其他文献

Yim Ling Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yim Ling Cheng', 18)}}的其他基金

Function of Mipp1 in Regulating Drosophila Trachea Tube Size and Branch Migration
Mipp1在调节果蝇气管管大小和分支迁移中的作用
  • 批准号:
    8255332
  • 财政年份:
    2010
  • 资助金额:
    $ 4.26万
  • 项目类别:
Function of Mipp1 in Regulating Drosophila Trachea Tube Size and Branch Migration
Mipp1在调节果蝇气管管大小和分支迁移中的作用
  • 批准号:
    7998429
  • 财政年份:
    2010
  • 资助金额:
    $ 4.26万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 4.26万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 4.26万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 4.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了