Biomarker Profiles for Prediction and Diagnosis of Post-Transplant Renal Injury

用于预测和诊断移植后肾损伤的生物标志物谱

基本信息

  • 批准号:
    7804107
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Post-transplant renal injury is a mechanistically complex process that leads to progressive, chronic renal insufficiency and constitutes a major clinical barrier to the short- and long-term success of all organ transplants. There is a strong need for non-invasive, predictive and diagnostic biomarkers that can inform therapeutic decisions for Chronic Allograft Nephropathy/Interstitial Fibrosis with Tubular Atrophy (CAN/IFTA) in kidney recipients, Acute Rejection (AR) in both kidney and non-renal recipients and Chronic Kidney Disease (CKD) in non-renal recipients. In collaboration with Northwestern University (NW), and The Scripps Research Institute (TSRI), Rules-Based Medicine (RBM) proposes a quantitative proteomics approach, using comprehensive Multi-Analyte Profiles (MAPs), to compare the protein profiles in plasma samples obtained from kidney, liver and heart transplant patients and identify both common and unique biomarker signatures and mechanisms of immunity, drug toxicity and the concomitant medical risk factors that drive renal injury. A number of research groups are performing detailed studies to evaluate the expression of individual biomarkers associated with renal injury for use as an objective clinical tool. However, the standard method for measuring plasma or serum levels of cytokines, chemokines or other biomarkers is to measure them one at a time using Enzyme-Linked Immunosorbent Assay. One-at-a-time assessment of each putative biomarker incurs considerable time, cost and sample volume. Clearly, no single molecular marker, or small group of markers, will be able to accurately classify individuals at highest risk. The ability to systematically identify protein profiles, predict risk of clinical events, evaluate therapeutic response, and define underlying mechanisms is thereby limited severely. RBM has developed MAPs to screen large numbers of biomarkers in parallel, using bead-based multiplex immunoassays. This technology provides a quantitative evaluation of protein expression patterns using very small sample volumes (10-20 5L) with a dynamic range of fg/mL to mg/mL. This technology is well suited for screening large numbers of markers in parallel to identify protein profiles associated with renal injury. Using this approach in a recent preliminary study, RBM, NW and TSRI have discovered a protein profile for AR with a 79% Predictive Accuracy, and a profile for CAN/IFTA (Banff 1,2,3) with a 91% Predictive Accuracy. We have also discovered a kidney injury panel that has a 94% Predictive Accuracy for kidney patients with transplant dysfunction due to CAN/IFTA, 82% with biopsy-proven AR and 82% for liver transplant recipients with renal insufficiency due to CNI toxicity, hypertension and metabolic syndromes. In this Fast-Track program, we propose to test, refine and validate these profiles. The goal will be to improve the long-term outcome of recipients of thoracic and abdominal organ transplants by developing novel biomarker patterns that clinicians can use to predict, diagnose and monitor transplant outcomes. PUBLIC HEALTH RELEVANCE: Post-transplant renal injury is a mechanistically complex process that leads to progressive, chronic renal insufficiency and constitutes a major clinical barrier to the short- and long-term success of all organ transplants. This program is designed to investigate what is common and what is unique in the biomarker signatures and mechanisms of immunity, drug toxicity and the concomitant medical risk factors that drive renal injury in kidney, liver and heart transplant patients. The goal will be to improve the long-term outcome of recipients of thoracic and abdominal organ transplants by developing novel biomarker patterns that clinicians can use to predict, diagnose and monitor transplant outcomes.
描述(由申请人提供):移植后肾损伤是一种机制复杂的过程,可导致进行性慢性肾功能不全,并构成所有器官移植短期和长期成功的主要临床障碍。强烈需要非侵入性、预测性和诊断性生物标志物,其可以为肾受体中的慢性移植物肾病/间质性纤维化伴肾小管萎缩(CAN/IFTA)、肾和非肾受体中的急性排斥(AR)以及非肾受体中的慢性肾病(CKD)的治疗决策提供信息。与西北大学(NW)和斯克里普斯研究所(TSRI)合作,基于规则的医学(RBM)提出了一种定量蛋白质组学方法,使用全面的多分析物谱(MAP),比较从肾脏,肝脏和心脏移植患者获得的血浆样本中的蛋白质谱,并识别常见和独特的生物标志物特征和免疫机制,药物毒性和导致肾损伤的伴随医疗风险因素。许多研究小组正在进行详细的研究,以评估与肾损伤相关的个体生物标志物的表达,作为客观的临床工具。然而,用于测量细胞因子、趋化因子或其他生物标志物的血浆或血清水平的标准方法是使用酶联免疫吸附测定一次测量一种。对每种假定的生物标志物进行一次一次的评估会花费大量的时间、成本和样本量。显然,没有一个单一的分子标记,或一小群标记,将能够准确地分类个人在最高风险。因此,系统鉴定蛋白质谱、预测临床事件风险、评价治疗反应和确定潜在机制的能力受到严重限制。RBM已经开发了MAP,使用基于珠粒的多重免疫测定法平行筛选大量生物标志物。该技术使用非常小的样品体积(10-20 5L)提供蛋白质表达模式的定量评价,动态范围为fg/mL至mg/mL。该技术非常适合于平行筛选大量标记物以鉴定与肾损伤相关的蛋白质谱。在最近的一项初步研究中使用这种方法,RBM,NW和TSRI发现了AR的蛋白质谱,预测准确度为79%,CAN/IFTA(Banff 1,2,3)的谱预测准确度为91%。我们还发现了一种肾损伤面板,其对由于CAN/IFTA导致的移植功能障碍的肾脏患者具有94%的预测准确性,对活检证实的AR具有82%的预测准确性,对由于CNI毒性、高血压和代谢综合征导致的肾功能不全的肝移植受者具有82%的预测准确性。在这个快速通道计划中,我们建议测试,完善和验证这些配置文件。其目标是通过开发临床医生可用于预测、诊断和监测移植结果的新型生物标志物模式,改善胸部和腹部器官移植受者的长期结局。 公共卫生关系:移植后肾损伤是一个机制复杂的过程,导致进行性慢性肾功能不全,并构成了所有器官移植短期和长期成功的主要临床障碍。该计划旨在研究生物标志物特征和免疫机制,药物毒性以及驱动肾脏,肝脏和心脏移植患者肾损伤的伴随医学风险因素中的常见和独特之处。其目标是通过开发临床医生可用于预测、诊断和监测移植结果的新型生物标志物模式,改善胸部和腹部器官移植受者的长期结局。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael M Abecassis其他文献

Michael M Abecassis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael M Abecassis', 18)}}的其他基金

Integrating Mechanistic Insights from Diverse Models to Prevent CMV Reactivation following Transplantation
整合不同模型的机制见解以防止移植后 CMV 重新激活
  • 批准号:
    8934950
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
Integrating Mechanistic Insights from Diverse Models to Prevent CMV Reactivation following Transplantation
整合不同模型的机制见解以防止移植后 CMV 重新激活
  • 批准号:
    9303245
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
Integrating Mechanistic Insights from Diverse Models to Prevent CMV Reactivation following Transplantation
整合不同模型的机制见解以防止移植后 CMV 重新激活
  • 批准号:
    9099718
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
Mechanisms of MCMV reactivation in immunodeficient transplant recipients
免疫缺陷移植受者中 MCMV 再激活的机制
  • 批准号:
    9295934
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
Role of innate immunity and injury in transplant-induced reactivation of MCMV
先天免疫和损伤在移植诱导的 MCMV 重新激活中的作用
  • 批准号:
    8227285
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
Role of innate immunity and injury in transplant-induced reactivation of MCMV
先天免疫和损伤在移植诱导的 MCMV 重新激活中的作用
  • 批准号:
    8435351
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
Role of Toll-like Receptors in Transplant-Induced Reactivation of Cytomegalovirus
Toll 样受体在移植诱导的巨细胞病毒再激活中的作用
  • 批准号:
    8086118
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
Living Donor Liver Transplant - Predictive Models for Long-Term Health Outcomes
活体肝移植 - 长期健康结果的预测模型
  • 批准号:
    8014622
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
Proteogenomics for Organ Transplantation: Prediction, Diagnosis, Intervention
器官移植的蛋白质基因组学:预测、诊断、干预
  • 批准号:
    8131698
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
Role of Toll-like Receptors in Transplant-Induced Reactivation of Cytomegalovirus
Toll 样受体在移植诱导的巨细胞病毒再激活中的作用
  • 批准号:
    7739139
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了